L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 − 0.587i)3-s + (−0.809 + 0.587i)4-s + (0.309 − 0.951i)5-s + (−0.309 + 0.951i)6-s + (0.809 − 0.587i)7-s + (0.809 + 0.587i)8-s + (0.309 + 0.951i)9-s − 10-s + 12-s + (−0.309 − 0.951i)13-s + (−0.809 − 0.587i)14-s + (−0.809 + 0.587i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + (0.809 − 0.587i)18-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 − 0.587i)3-s + (−0.809 + 0.587i)4-s + (0.309 − 0.951i)5-s + (−0.309 + 0.951i)6-s + (0.809 − 0.587i)7-s + (0.809 + 0.587i)8-s + (0.309 + 0.951i)9-s − 10-s + 12-s + (−0.309 − 0.951i)13-s + (−0.809 − 0.587i)14-s + (−0.809 + 0.587i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + (0.809 − 0.587i)18-s + ⋯ |
Λ(s)=(=(11s/2ΓR(s+1)L(s)(−0.642−0.766i)Λ(1−s)
Λ(s)=(=(11s/2ΓR(s+1)L(s)(−0.642−0.766i)Λ(1−s)
Degree: |
1 |
Conductor: |
11
|
Sign: |
−0.642−0.766i
|
Analytic conductor: |
1.18211 |
Root analytic conductor: |
1.18211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ11(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 11, (1: ), −0.642−0.766i)
|
Particular Values
L(21) |
≈ |
0.3214164081−0.6890281810i |
L(21) |
≈ |
0.3214164081−0.6890281810i |
L(1) |
≈ |
0.5422944263−0.5305008734i |
L(1) |
≈ |
0.5422944263−0.5305008734i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
good | 2 | 1+(−0.309−0.951i)T |
| 3 | 1+(−0.809−0.587i)T |
| 5 | 1+(0.309−0.951i)T |
| 7 | 1+(0.809−0.587i)T |
| 13 | 1+(−0.309−0.951i)T |
| 17 | 1+(−0.309+0.951i)T |
| 19 | 1+(0.809+0.587i)T |
| 23 | 1+T |
| 29 | 1+(0.809−0.587i)T |
| 31 | 1+(0.309+0.951i)T |
| 37 | 1+(−0.809+0.587i)T |
| 41 | 1+(0.809+0.587i)T |
| 43 | 1−T |
| 47 | 1+(−0.809−0.587i)T |
| 53 | 1+(0.309+0.951i)T |
| 59 | 1+(−0.809+0.587i)T |
| 61 | 1+(−0.309+0.951i)T |
| 67 | 1+T |
| 71 | 1+(0.309−0.951i)T |
| 73 | 1+(0.809−0.587i)T |
| 79 | 1+(−0.309−0.951i)T |
| 83 | 1+(−0.309+0.951i)T |
| 89 | 1+T |
| 97 | 1+(0.309+0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−45.61383532443762936966007233188, −44.50315105809981977478377956073, −43.28237879087022285362370498164, −41.451985024130012558407220182013, −40.50913716343137847444457958349, −38.40599013182803415397550119015, −37.07569800336932558076454614719, −35.01510928430873838470872938337, −33.99140302987517963033014866190, −33.178842589001558746303926414737, −31.22940901204067250687963009483, −28.947771705705823981195394585, −27.40725717753448042762789920871, −26.328449037768254749252262762333, −24.45819581215308996084408240869, −22.83885406338058962719853601162, −21.59808825881419508444894553380, −18.527889377871107268152218354111, −17.43161793522573674272782938011, −15.68125120531344955254954835691, −14.31664759932336707218166025316, −11.259986049139631879002309758061, −9.42882532201290964105489786007, −6.85188812449087884224022796653, −5.07031637930817115271739478905,
1.23118824094644557330126632913, 4.9627151638056233330962205550, 8.08939114538406115212311784238, 10.4500536382022332221178893649, 12.11506980690332170753638554345, 13.437657526437096729270089409681, 16.94978978223110727613037943840, 17.87481329763534279900237596385, 19.83012856053316642706724002179, 21.32039371631114630973784591369, 23.103365240819911054545433311199, 24.71060202237696255086224193381, 27.19549761157675669135899555136, 28.41349834370446234328316226414, 29.57219606296392511801120043627, 30.86131192335796380131399489359, 32.88578028689798316267070256069, 34.89957117724815985971476450101, 36.20301087650878318423744955110, 37.23130886007165567642745472163, 39.57532585824936030442348526707, 39.955595985887364149097406429137, 41.40118442396643591924427168519, 43.84491852037660538321332748361, 45.18664587132294167255369395899