L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 − 0.587i)3-s + (−0.809 + 0.587i)4-s + (0.309 − 0.951i)5-s + (−0.309 + 0.951i)6-s + (0.809 − 0.587i)7-s + (0.809 + 0.587i)8-s + (0.309 + 0.951i)9-s − 10-s + 12-s + (−0.309 − 0.951i)13-s + (−0.809 − 0.587i)14-s + (−0.809 + 0.587i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + (0.809 − 0.587i)18-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 − 0.587i)3-s + (−0.809 + 0.587i)4-s + (0.309 − 0.951i)5-s + (−0.309 + 0.951i)6-s + (0.809 − 0.587i)7-s + (0.809 + 0.587i)8-s + (0.309 + 0.951i)9-s − 10-s + 12-s + (−0.309 − 0.951i)13-s + (−0.809 − 0.587i)14-s + (−0.809 + 0.587i)15-s + (0.309 − 0.951i)16-s + (−0.309 + 0.951i)17-s + (0.809 − 0.587i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3214164081 - 0.6890281810i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3214164081 - 0.6890281810i\) |
\(L(1)\) |
\(\approx\) |
\(0.5422944263 - 0.5305008734i\) |
\(L(1)\) |
\(\approx\) |
\(0.5422944263 - 0.5305008734i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
good | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (0.309 - 0.951i)T \) |
| 7 | \( 1 + (0.809 - 0.587i)T \) |
| 13 | \( 1 + (-0.309 - 0.951i)T \) |
| 17 | \( 1 + (-0.309 + 0.951i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 41 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.809 - 0.587i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (-0.809 + 0.587i)T \) |
| 61 | \( 1 + (-0.309 + 0.951i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.309 - 0.951i)T \) |
| 73 | \( 1 + (0.809 - 0.587i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.309 + 0.951i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−45.61383532443762936966007233188, −44.50315105809981977478377956073, −43.28237879087022285362370498164, −41.451985024130012558407220182013, −40.50913716343137847444457958349, −38.40599013182803415397550119015, −37.07569800336932558076454614719, −35.01510928430873838470872938337, −33.99140302987517963033014866190, −33.178842589001558746303926414737, −31.22940901204067250687963009483, −28.947771705705823981195394585, −27.40725717753448042762789920871, −26.328449037768254749252262762333, −24.45819581215308996084408240869, −22.83885406338058962719853601162, −21.59808825881419508444894553380, −18.527889377871107268152218354111, −17.43161793522573674272782938011, −15.68125120531344955254954835691, −14.31664759932336707218166025316, −11.259986049139631879002309758061, −9.42882532201290964105489786007, −6.85188812449087884224022796653, −5.07031637930817115271739478905,
1.23118824094644557330126632913, 4.9627151638056233330962205550, 8.08939114538406115212311784238, 10.4500536382022332221178893649, 12.11506980690332170753638554345, 13.437657526437096729270089409681, 16.94978978223110727613037943840, 17.87481329763534279900237596385, 19.83012856053316642706724002179, 21.32039371631114630973784591369, 23.103365240819911054545433311199, 24.71060202237696255086224193381, 27.19549761157675669135899555136, 28.41349834370446234328316226414, 29.57219606296392511801120043627, 30.86131192335796380131399489359, 32.88578028689798316267070256069, 34.89957117724815985971476450101, 36.20301087650878318423744955110, 37.23130886007165567642745472163, 39.57532585824936030442348526707, 39.955595985887364149097406429137, 41.40118442396643591924427168519, 43.84491852037660538321332748361, 45.18664587132294167255369395899