L(s) = 1 | + i·2-s − 4-s − i·5-s + 7-s − i·8-s + 10-s + 11-s + i·13-s + i·14-s + 16-s − i·17-s + i·19-s + i·20-s + i·22-s − i·23-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s − i·5-s + 7-s − i·8-s + 10-s + 11-s + i·13-s + i·14-s + 16-s − i·17-s + i·19-s + i·20-s + i·22-s − i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 111 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.763 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 111 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.763 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9881035017 + 0.3622677591i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9881035017 + 0.3622677591i\) |
\(L(1)\) |
\(\approx\) |
\(1.005205997 + 0.3261861599i\) |
\(L(1)\) |
\(\approx\) |
\(1.005205997 + 0.3261861599i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 - iT \) |
| 17 | \( 1 \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + iT \) |
| 53 | \( 1 \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - iT \) |
| 67 | \( 1 \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.66440527821468153506502899863, −28.21248907353080012274514077345, −27.43323137913473421562073271683, −26.64510468541732578957644109433, −25.429559492161978341019745817681, −23.98528421877642107708251766347, −22.88516475180933603338049264181, −21.97315009033450599590816103648, −21.21194819607120774285783591695, −19.87747201181742139296132788829, −19.171517977172636717104438845574, −17.75109017990850829481342625104, −17.48633340862625147091893649035, −15.21026045571733586511896222171, −14.41888668486238679217372262260, −13.34612829546419814576021469075, −11.89542029520899863820477135500, −11.07911670319207838558988495661, −10.1770931808642285897416934515, −8.78371933860792514234624149618, −7.53497363543995876552634279051, −5.80436208548715236602973847442, −4.279001187352969531211547410750, −3.03592437113616164168518586034, −1.595431243656791443714747977606,
1.39957129056617761445608487221, 4.14870331785780168197330348642, 4.94835953615715578724879176005, 6.30617182653870183854456625765, 7.68783893911254707954066243435, 8.729210781987695480264678210541, 9.5744683738891522423469575518, 11.51769663487572904239078083469, 12.6173498942671991394491783829, 14.037225536500387966801553233653, 14.61908872242994616993331030442, 16.19418533316915232310880367659, 16.767852071157142961510899708689, 17.8145091671361845659028858432, 18.92717518187404463262340159150, 20.37507869049141348308132747817, 21.37418382078989191225808917594, 22.59509342469281790479679432973, 23.76250379675297104890885758263, 24.551109758737302616442485186118, 25.11055829143777148463840964884, 26.55622581463859429564152011341, 27.48179409806595153996735324015, 28.12436458621962665703466427156, 29.537090350716544791381195641623