L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.939 − 0.342i)4-s + (−0.766 + 0.642i)5-s + (0.766 − 0.642i)7-s + (0.5 − 0.866i)8-s + (−0.5 − 0.866i)10-s + (0.5 − 0.866i)11-s + (−0.939 − 0.342i)13-s + (0.5 + 0.866i)14-s + (0.766 + 0.642i)16-s + (0.939 − 0.342i)17-s + (0.173 + 0.984i)19-s + (0.939 − 0.342i)20-s + (0.766 + 0.642i)22-s + (0.5 + 0.866i)23-s + ⋯ |
L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.939 − 0.342i)4-s + (−0.766 + 0.642i)5-s + (0.766 − 0.642i)7-s + (0.5 − 0.866i)8-s + (−0.5 − 0.866i)10-s + (0.5 − 0.866i)11-s + (−0.939 − 0.342i)13-s + (0.5 + 0.866i)14-s + (0.766 + 0.642i)16-s + (0.939 − 0.342i)17-s + (0.173 + 0.984i)19-s + (0.939 − 0.342i)20-s + (0.766 + 0.642i)22-s + (0.5 + 0.866i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 111 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.806 + 0.590i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 111 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.806 + 0.590i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.246945659 + 0.4077687171i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.246945659 + 0.4077687171i\) |
\(L(1)\) |
\(\approx\) |
\(0.8695526414 + 0.3266812664i\) |
\(L(1)\) |
\(\approx\) |
\(0.8695526414 + 0.3266812664i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.173 + 0.984i)T \) |
| 5 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 + (0.766 - 0.642i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.939 - 0.342i)T \) |
| 17 | \( 1 + (0.939 - 0.342i)T \) |
| 19 | \( 1 + (0.173 + 0.984i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.766 - 0.642i)T \) |
| 59 | \( 1 + (-0.766 - 0.642i)T \) |
| 61 | \( 1 + (-0.939 - 0.342i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.939 - 0.342i)T \) |
| 89 | \( 1 + (-0.766 - 0.642i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.88820851480900210152928810714, −28.00116766906652428910313081064, −27.49913777775850614667250928479, −26.38843404622870741282364750826, −24.924411129132249113801582453904, −23.86889313025629248203277660048, −22.775114473761695950658711385570, −21.66817884710833328072262546489, −20.7315461354878300921792087079, −19.78771703416484004627787698564, −18.956125717401562001171344562784, −17.69514810629689077517121601644, −16.81645984302912814627675653018, −15.209088265803374692586846194244, −14.20188611684642864690269743777, −12.43667123125268657385023637560, −12.15221837159800079117088531945, −10.9547868438079024141360668051, −9.49264428695125261526517109662, −8.57864307663699423674798610525, −7.41912945621212526699770989175, −5.06815519799252899302742517368, −4.310364917646290221278684673440, −2.58470593591586848351120110192, −1.08995292441564824993966806489,
0.804829059069862917684747266764, 3.44848836231162585988634052660, 4.714166405152985462874047554734, 6.1445247283357375197947382137, 7.55450075523829046912879693567, 7.997371403264015663109148353916, 9.66787442557344056584784475046, 10.87256746356887889477039756154, 12.146732703138407961531646926986, 13.93692170225886652651703787878, 14.47761760662906571264844669592, 15.58329130115526249417045680207, 16.723558912848323981966665051566, 17.5979171390154961126495950305, 18.8526108610111985713855218998, 19.56969358063483828024142114150, 21.190356265782035131908153664919, 22.52328326088000615678335731996, 23.25170642357203097622467460721, 24.23695803730445865276015707827, 25.09268104171895346570503894160, 26.47240696376025228868247815204, 27.160242426633400970794728002108, 27.61868468898016010825085681876, 29.44401899658420892854259620055