L(s) = 1 | + (−0.909 − 0.415i)2-s + (0.281 − 0.959i)3-s + (0.654 + 0.755i)4-s + (−0.654 + 0.755i)6-s + (−0.989 − 0.142i)7-s + (−0.281 − 0.959i)8-s + (−0.841 − 0.540i)9-s + (−0.415 − 0.909i)11-s + (0.909 − 0.415i)12-s + (0.989 − 0.142i)13-s + (0.841 + 0.540i)14-s + (−0.142 + 0.989i)16-s + (−0.755 − 0.654i)17-s + (0.540 + 0.841i)18-s + (−0.654 − 0.755i)19-s + ⋯ |
L(s) = 1 | + (−0.909 − 0.415i)2-s + (0.281 − 0.959i)3-s + (0.654 + 0.755i)4-s + (−0.654 + 0.755i)6-s + (−0.989 − 0.142i)7-s + (−0.281 − 0.959i)8-s + (−0.841 − 0.540i)9-s + (−0.415 − 0.909i)11-s + (0.909 − 0.415i)12-s + (0.989 − 0.142i)13-s + (0.841 + 0.540i)14-s + (−0.142 + 0.989i)16-s + (−0.755 − 0.654i)17-s + (0.540 + 0.841i)18-s + (−0.654 − 0.755i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.871 - 0.489i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.871 - 0.489i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1362430788 - 0.5209828663i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1362430788 - 0.5209828663i\) |
\(L(1)\) |
\(\approx\) |
\(0.4926595344 - 0.3959418248i\) |
\(L(1)\) |
\(\approx\) |
\(0.4926595344 - 0.3959418248i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (-0.909 - 0.415i)T \) |
| 3 | \( 1 + (0.281 - 0.959i)T \) |
| 7 | \( 1 + (-0.989 - 0.142i)T \) |
| 11 | \( 1 + (-0.415 - 0.909i)T \) |
| 13 | \( 1 + (0.989 - 0.142i)T \) |
| 17 | \( 1 + (-0.755 - 0.654i)T \) |
| 19 | \( 1 + (-0.654 - 0.755i)T \) |
| 29 | \( 1 + (0.654 - 0.755i)T \) |
| 31 | \( 1 + (-0.959 + 0.281i)T \) |
| 37 | \( 1 + (-0.540 + 0.841i)T \) |
| 41 | \( 1 + (0.841 - 0.540i)T \) |
| 43 | \( 1 + (-0.281 + 0.959i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.989 + 0.142i)T \) |
| 59 | \( 1 + (0.142 + 0.989i)T \) |
| 61 | \( 1 + (0.959 - 0.281i)T \) |
| 67 | \( 1 + (0.909 + 0.415i)T \) |
| 71 | \( 1 + (0.415 - 0.909i)T \) |
| 73 | \( 1 + (0.755 - 0.654i)T \) |
| 79 | \( 1 + (-0.142 - 0.989i)T \) |
| 83 | \( 1 + (0.540 - 0.841i)T \) |
| 89 | \( 1 + (-0.959 - 0.281i)T \) |
| 97 | \( 1 + (0.540 + 0.841i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.23056767351131932241899449283, −28.3837479546086040321468122502, −27.70313865823399473520132755835, −26.50078302300351094267487832590, −25.78518466330640233671208599661, −25.23714728213467880300589379531, −23.57743384188448496867485122194, −22.66607498508630306697751967899, −21.28766491174976525937895300659, −20.26636615182872435353565443014, −19.44754494769057765762590971061, −18.27604505645616893965397527175, −17.05103639313175936800280384234, −16.03851077334163215841091628670, −15.44272885657449773535367239318, −14.33723523612687503957824115764, −12.745692892935406488037680168008, −11.00314042863871769486074458068, −10.18751464917872475321635033421, −9.20416597518506907821126520103, −8.28821346611743955722680685751, −6.73489435166315062243007205841, −5.55540534289610756076629661357, −3.87841263828079817995533620970, −2.242083576916896271682150274499,
0.64228573662456189438573877365, 2.42570353531372195879327927437, 3.48091046473051923794048474737, 6.15464692674351400977029800602, 7.026742193707898355940018446, 8.36093025046632592260954693397, 9.133069171819492767337704420829, 10.64214351053774816309438497014, 11.666906156697963083457104661779, 12.99292806776093839148365510050, 13.56210055835002433891521733971, 15.534561334409634882273767407671, 16.5020292561134521422056431076, 17.74536391377293631465474174559, 18.61480372138170582055617664835, 19.412208242375199074394997084620, 20.22304938952569502978282876205, 21.41534917450999306703323510995, 22.78209619393032891020547082015, 23.98568740199777656488990528763, 25.07172202984292960936573222686, 25.921610042622678794607510239730, 26.61462922578551269595117328972, 28.05771077678479839672496121614, 29.06202121882354543171515607102