L(s) = 1 | + (−0.909 − 0.415i)2-s + (0.281 − 0.959i)3-s + (0.654 + 0.755i)4-s + (−0.654 + 0.755i)6-s + (−0.989 − 0.142i)7-s + (−0.281 − 0.959i)8-s + (−0.841 − 0.540i)9-s + (−0.415 − 0.909i)11-s + (0.909 − 0.415i)12-s + (0.989 − 0.142i)13-s + (0.841 + 0.540i)14-s + (−0.142 + 0.989i)16-s + (−0.755 − 0.654i)17-s + (0.540 + 0.841i)18-s + (−0.654 − 0.755i)19-s + ⋯ |
L(s) = 1 | + (−0.909 − 0.415i)2-s + (0.281 − 0.959i)3-s + (0.654 + 0.755i)4-s + (−0.654 + 0.755i)6-s + (−0.989 − 0.142i)7-s + (−0.281 − 0.959i)8-s + (−0.841 − 0.540i)9-s + (−0.415 − 0.909i)11-s + (0.909 − 0.415i)12-s + (0.989 − 0.142i)13-s + (0.841 + 0.540i)14-s + (−0.142 + 0.989i)16-s + (−0.755 − 0.654i)17-s + (0.540 + 0.841i)18-s + (−0.654 − 0.755i)19-s + ⋯ |
Λ(s)=(=(115s/2ΓR(s)L(s)(−0.871−0.489i)Λ(1−s)
Λ(s)=(=(115s/2ΓR(s)L(s)(−0.871−0.489i)Λ(1−s)
Degree: |
1 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.871−0.489i
|
Analytic conductor: |
0.534057 |
Root analytic conductor: |
0.534057 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 115, (0: ), −0.871−0.489i)
|
Particular Values
L(21) |
≈ |
0.1362430788−0.5209828663i |
L(21) |
≈ |
0.1362430788−0.5209828663i |
L(1) |
≈ |
0.4926595344−0.3959418248i |
L(1) |
≈ |
0.4926595344−0.3959418248i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 23 | 1 |
good | 2 | 1+(−0.909−0.415i)T |
| 3 | 1+(0.281−0.959i)T |
| 7 | 1+(−0.989−0.142i)T |
| 11 | 1+(−0.415−0.909i)T |
| 13 | 1+(0.989−0.142i)T |
| 17 | 1+(−0.755−0.654i)T |
| 19 | 1+(−0.654−0.755i)T |
| 29 | 1+(0.654−0.755i)T |
| 31 | 1+(−0.959+0.281i)T |
| 37 | 1+(−0.540+0.841i)T |
| 41 | 1+(0.841−0.540i)T |
| 43 | 1+(−0.281+0.959i)T |
| 47 | 1−iT |
| 53 | 1+(0.989+0.142i)T |
| 59 | 1+(0.142+0.989i)T |
| 61 | 1+(0.959−0.281i)T |
| 67 | 1+(0.909+0.415i)T |
| 71 | 1+(0.415−0.909i)T |
| 73 | 1+(0.755−0.654i)T |
| 79 | 1+(−0.142−0.989i)T |
| 83 | 1+(0.540−0.841i)T |
| 89 | 1+(−0.959−0.281i)T |
| 97 | 1+(0.540+0.841i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−29.23056767351131932241899449283, −28.3837479546086040321468122502, −27.70313865823399473520132755835, −26.50078302300351094267487832590, −25.78518466330640233671208599661, −25.23714728213467880300589379531, −23.57743384188448496867485122194, −22.66607498508630306697751967899, −21.28766491174976525937895300659, −20.26636615182872435353565443014, −19.44754494769057765762590971061, −18.27604505645616893965397527175, −17.05103639313175936800280384234, −16.03851077334163215841091628670, −15.44272885657449773535367239318, −14.33723523612687503957824115764, −12.745692892935406488037680168008, −11.00314042863871769486074458068, −10.18751464917872475321635033421, −9.20416597518506907821126520103, −8.28821346611743955722680685751, −6.73489435166315062243007205841, −5.55540534289610756076629661357, −3.87841263828079817995533620970, −2.242083576916896271682150274499,
0.64228573662456189438573877365, 2.42570353531372195879327927437, 3.48091046473051923794048474737, 6.15464692674351400977029800602, 7.026742193707898355940018446, 8.36093025046632592260954693397, 9.133069171819492767337704420829, 10.64214351053774816309438497014, 11.666906156697963083457104661779, 12.99292806776093839148365510050, 13.56210055835002433891521733971, 15.534561334409634882273767407671, 16.5020292561134521422056431076, 17.74536391377293631465474174559, 18.61480372138170582055617664835, 19.412208242375199074394997084620, 20.22304938952569502978282876205, 21.41534917450999306703323510995, 22.78209619393032891020547082015, 23.98568740199777656488990528763, 25.07172202984292960936573222686, 25.921610042622678794607510239730, 26.61462922578551269595117328972, 28.05771077678479839672496121614, 29.06202121882354543171515607102