L(s) = 1 | + (0.909 − 0.415i)2-s + (−0.281 − 0.959i)3-s + (0.654 − 0.755i)4-s + (−0.654 − 0.755i)6-s + (0.989 − 0.142i)7-s + (0.281 − 0.959i)8-s + (−0.841 + 0.540i)9-s + (−0.415 + 0.909i)11-s + (−0.909 − 0.415i)12-s + (−0.989 − 0.142i)13-s + (0.841 − 0.540i)14-s + (−0.142 − 0.989i)16-s + (0.755 − 0.654i)17-s + (−0.540 + 0.841i)18-s + (−0.654 + 0.755i)19-s + ⋯ |
L(s) = 1 | + (0.909 − 0.415i)2-s + (−0.281 − 0.959i)3-s + (0.654 − 0.755i)4-s + (−0.654 − 0.755i)6-s + (0.989 − 0.142i)7-s + (0.281 − 0.959i)8-s + (−0.841 + 0.540i)9-s + (−0.415 + 0.909i)11-s + (−0.909 − 0.415i)12-s + (−0.989 − 0.142i)13-s + (0.841 − 0.540i)14-s + (−0.142 − 0.989i)16-s + (0.755 − 0.654i)17-s + (−0.540 + 0.841i)18-s + (−0.654 + 0.755i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0479 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0479 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.116692816 - 1.171528278i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.116692816 - 1.171528278i\) |
\(L(1)\) |
\(\approx\) |
\(1.320678253 - 0.8310275058i\) |
\(L(1)\) |
\(\approx\) |
\(1.320678253 - 0.8310275058i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.909 - 0.415i)T \) |
| 3 | \( 1 + (-0.281 - 0.959i)T \) |
| 7 | \( 1 + (0.989 - 0.142i)T \) |
| 11 | \( 1 + (-0.415 + 0.909i)T \) |
| 13 | \( 1 + (-0.989 - 0.142i)T \) |
| 17 | \( 1 + (0.755 - 0.654i)T \) |
| 19 | \( 1 + (-0.654 + 0.755i)T \) |
| 29 | \( 1 + (0.654 + 0.755i)T \) |
| 31 | \( 1 + (-0.959 - 0.281i)T \) |
| 37 | \( 1 + (0.540 + 0.841i)T \) |
| 41 | \( 1 + (0.841 + 0.540i)T \) |
| 43 | \( 1 + (0.281 + 0.959i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.989 + 0.142i)T \) |
| 59 | \( 1 + (0.142 - 0.989i)T \) |
| 61 | \( 1 + (0.959 + 0.281i)T \) |
| 67 | \( 1 + (-0.909 + 0.415i)T \) |
| 71 | \( 1 + (0.415 + 0.909i)T \) |
| 73 | \( 1 + (-0.755 - 0.654i)T \) |
| 79 | \( 1 + (-0.142 + 0.989i)T \) |
| 83 | \( 1 + (-0.540 - 0.841i)T \) |
| 89 | \( 1 + (-0.959 + 0.281i)T \) |
| 97 | \( 1 + (-0.540 + 0.841i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.67359261648902098357932433213, −28.58321009438530936423483868423, −27.3145471270854826330786300301, −26.54161131516670992324722072671, −25.4396055379710132696272647581, −24.141788842876658754397933201999, −23.540123675391051504695091345706, −22.19841684877020345464429114789, −21.45395412519994789765747962178, −20.89411936917295020405878636510, −19.50514017079002749515793145096, −17.63093905900362833218794838136, −16.84650456648387401895822816992, −15.78540763149402097853891778815, −14.79770826936498517551219641169, −14.11078315044400639111473591434, −12.53686183337826379177598905318, −11.415090844678610917108585126213, −10.58402333583767976439879079313, −8.82718565059850219680840127111, −7.671211258268695334344914802436, −5.97242449274484072615688041326, −5.071739381372297013537383631887, −4.04621053333434988868265966005, −2.58800323923188025070761256102,
1.51096438911267002013531343642, 2.64921694258128042252712902807, 4.6153613327666109926390504793, 5.53408575985564710845972598428, 7.01207536741465946287539253803, 7.89962884379018939823946668318, 9.98494522268232651319959879302, 11.193128866614073508431578505171, 12.18242174650650638200478337137, 12.89850115997317156497221769070, 14.25816085253449625151683391733, 14.82223555483765360891388322579, 16.52787286032235917176708543095, 17.76614367210378632270591446269, 18.74207215456022967592649285111, 19.93185109884281910734157169976, 20.75993376375451594784780229194, 21.97009206698231468771253623133, 23.13095756977851525258267935313, 23.69033755253451113004848363423, 24.73950257325635268769158309197, 25.45660246605983476615416197462, 27.36175908101658298143126456290, 28.2676128936739806158766350906, 29.45270747738259189833815414882