L(s) = 1 | + (0.654 + 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (−0.142 − 0.989i)6-s + (0.959 + 0.281i)7-s + (−0.841 + 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.654 + 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (0.415 + 0.909i)14-s + (−0.959 − 0.281i)16-s + (0.142 + 0.989i)17-s + (−0.415 + 0.909i)18-s + (−0.142 + 0.989i)19-s + ⋯ |
L(s) = 1 | + (0.654 + 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (−0.142 − 0.989i)6-s + (0.959 + 0.281i)7-s + (−0.841 + 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.654 + 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (0.415 + 0.909i)14-s + (−0.959 − 0.281i)16-s + (0.142 + 0.989i)17-s + (−0.415 + 0.909i)18-s + (−0.142 + 0.989i)19-s + ⋯ |
Λ(s)=(=(115s/2ΓR(s)L(s)(0.117+0.993i)Λ(1−s)
Λ(s)=(=(115s/2ΓR(s)L(s)(0.117+0.993i)Λ(1−s)
Degree: |
1 |
Conductor: |
115
= 5⋅23
|
Sign: |
0.117+0.993i
|
Analytic conductor: |
0.534057 |
Root analytic conductor: |
0.534057 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 115, (0: ), 0.117+0.993i)
|
Particular Values
L(21) |
≈ |
0.8585184344+0.7629518205i |
L(21) |
≈ |
0.8585184344+0.7629518205i |
L(1) |
≈ |
1.035359787+0.5147159243i |
L(1) |
≈ |
1.035359787+0.5147159243i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 23 | 1 |
good | 2 | 1+(0.654+0.755i)T |
| 3 | 1+(−0.841−0.540i)T |
| 7 | 1+(0.959+0.281i)T |
| 11 | 1+(−0.654+0.755i)T |
| 13 | 1+(0.959−0.281i)T |
| 17 | 1+(0.142+0.989i)T |
| 19 | 1+(−0.142+0.989i)T |
| 29 | 1+(−0.142−0.989i)T |
| 31 | 1+(0.841−0.540i)T |
| 37 | 1+(−0.415−0.909i)T |
| 41 | 1+(0.415−0.909i)T |
| 43 | 1+(−0.841−0.540i)T |
| 47 | 1−T |
| 53 | 1+(0.959+0.281i)T |
| 59 | 1+(−0.959+0.281i)T |
| 61 | 1+(0.841−0.540i)T |
| 67 | 1+(0.654+0.755i)T |
| 71 | 1+(−0.654−0.755i)T |
| 73 | 1+(0.142−0.989i)T |
| 79 | 1+(−0.959+0.281i)T |
| 83 | 1+(−0.415−0.909i)T |
| 89 | 1+(0.841+0.540i)T |
| 97 | 1+(−0.415+0.909i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−29.10313705408449113602438256313, −28.12958585129910008323113886517, −27.40179290352737298892919125166, −26.372400029302204110033436822059, −24.46135446751767404938751774427, −23.642101437971210703475406259129, −22.93549466958205247821651350339, −21.63377500692663553591240079733, −21.138165870545601882848428075997, −20.17532366408516165252220401144, −18.57112217570843081551417639400, −17.86316426863556526511640041436, −16.34016731878351938196561268028, −15.381599644849654167574752922932, −14.12136715818564179379916440548, −13.10753359924897240147158079461, −11.57767757730299468987149450972, −11.161629491719913628999987854210, −10.11672381704947753976617204399, −8.68780761877440654332002743930, −6.672018228862258725994163175385, −5.33716758378048650157559078796, −4.57234444883937206243247490292, −3.14839730646965663572739337693, −1.13747561405003264459911904188,
1.9884665858319784473709972679, 4.1239627441830562950890759559, 5.35106421411417604257955237406, 6.17661018720641704698213896638, 7.59679018249535108016140936049, 8.3392594685906112067006529222, 10.48719988525456163466462478897, 11.71431778442403459623363903244, 12.62296673249292294839742534713, 13.60340054532178519259264743249, 14.900491362441900189552512892834, 15.85741707899964335477538851776, 17.10897088402198095512940628583, 17.82266348041846248770362500590, 18.74253248074542819637869969331, 20.72089029193433773995731298477, 21.46583805903655275502911473533, 22.80697555371590991582955427974, 23.34961716492423017552901325337, 24.32719194328124229375103689521, 25.12612126893441070904139643517, 26.24344291348786609789518827953, 27.633278141626577538394213944957, 28.40067718982267396478890905375, 29.84356158636209520110215730914