Properties

Label 1-115-115.48-r1-0-0
Degree 11
Conductor 115115
Sign 0.996+0.0845i-0.996 + 0.0845i
Analytic cond. 12.358412.3584
Root an. cond. 12.358412.3584
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.909 − 0.415i)2-s + (−0.281 − 0.959i)3-s + (0.654 − 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.989 + 0.142i)7-s + (0.281 − 0.959i)8-s + (−0.841 + 0.540i)9-s + (0.415 − 0.909i)11-s + (−0.909 − 0.415i)12-s + (−0.989 − 0.142i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (−0.755 + 0.654i)17-s + (−0.540 + 0.841i)18-s + (0.654 − 0.755i)19-s + ⋯
L(s)  = 1  + (0.909 − 0.415i)2-s + (−0.281 − 0.959i)3-s + (0.654 − 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.989 + 0.142i)7-s + (0.281 − 0.959i)8-s + (−0.841 + 0.540i)9-s + (0.415 − 0.909i)11-s + (−0.909 − 0.415i)12-s + (−0.989 − 0.142i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (−0.755 + 0.654i)17-s + (−0.540 + 0.841i)18-s + (0.654 − 0.755i)19-s + ⋯

Functional equation

Λ(s)=(115s/2ΓR(s+1)L(s)=((0.996+0.0845i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.996 + 0.0845i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(115s/2ΓR(s+1)L(s)=((0.996+0.0845i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.996 + 0.0845i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 115115    =    5235 \cdot 23
Sign: 0.996+0.0845i-0.996 + 0.0845i
Analytic conductor: 12.358412.3584
Root analytic conductor: 12.358412.3584
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ115(48,)\chi_{115} (48, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 115, (1: ), 0.996+0.0845i)(1,\ 115,\ (1:\ ),\ -0.996 + 0.0845i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.071092283441.677856383i-0.07109228344 - 1.677856383i
L(12)L(\frac12) \approx 0.071092283441.677856383i-0.07109228344 - 1.677856383i
L(1)L(1) \approx 0.93118792020.9229494465i0.9311879202 - 0.9229494465i
L(1)L(1) \approx 0.93118792020.9229494465i0.9311879202 - 0.9229494465i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
23 1 1
good2 1+(0.9090.415i)T 1 + (0.909 - 0.415i)T
3 1+(0.2810.959i)T 1 + (-0.281 - 0.959i)T
7 1+(0.989+0.142i)T 1 + (-0.989 + 0.142i)T
11 1+(0.4150.909i)T 1 + (0.415 - 0.909i)T
13 1+(0.9890.142i)T 1 + (-0.989 - 0.142i)T
17 1+(0.755+0.654i)T 1 + (-0.755 + 0.654i)T
19 1+(0.6540.755i)T 1 + (0.654 - 0.755i)T
29 1+(0.654+0.755i)T 1 + (0.654 + 0.755i)T
31 1+(0.9590.281i)T 1 + (-0.959 - 0.281i)T
37 1+(0.5400.841i)T 1 + (-0.540 - 0.841i)T
41 1+(0.841+0.540i)T 1 + (0.841 + 0.540i)T
43 1+(0.2810.959i)T 1 + (-0.281 - 0.959i)T
47 1iT 1 - iT
53 1+(0.9890.142i)T 1 + (0.989 - 0.142i)T
59 1+(0.1420.989i)T 1 + (0.142 - 0.989i)T
61 1+(0.9590.281i)T 1 + (-0.959 - 0.281i)T
67 1+(0.9090.415i)T 1 + (0.909 - 0.415i)T
71 1+(0.415+0.909i)T 1 + (0.415 + 0.909i)T
73 1+(0.7550.654i)T 1 + (-0.755 - 0.654i)T
79 1+(0.1420.989i)T 1 + (0.142 - 0.989i)T
83 1+(0.540+0.841i)T 1 + (0.540 + 0.841i)T
89 1+(0.9590.281i)T 1 + (0.959 - 0.281i)T
97 1+(0.5400.841i)T 1 + (0.540 - 0.841i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−29.36425519973831640337082809744, −28.861707048993244129026515399322, −27.33268253590942522451372141906, −26.380639912370305333177258636545, −25.49715591708211938629846284644, −24.44631180050633292633836060906, −22.92473395482703045420983683825, −22.60838663264258432230819234538, −21.672378763999730066196881376977, −20.47023915451802958165308979785, −19.72112159833573661281953019716, −17.67367088068933239011025442183, −16.68835546664336944819599101049, −15.87692770607625431183554879458, −14.94956904649015088136131381572, −13.93386754552253295421343643785, −12.523335892085287530400084495650, −11.68411752322292677837647503666, −10.20598420840010938857169943366, −9.2006933180062952293800223946, −7.3518688345690150140842819710, −6.25712797724178380137060530066, −4.96578853601680047067123715615, −3.98223503979501127304532228317, −2.70627280273594073154454121643, 0.50571762023202468569608423831, 2.24092777138098893162271281768, 3.44116626244563594729154666911, 5.24747293871594010283543915442, 6.32245299582408540370077758433, 7.20304038172538642384210211338, 9.05105612696561701785359138981, 10.59633569866255802001989852297, 11.704804236947307109647455630184, 12.65013196078732911659984481547, 13.42338386466081512889900238575, 14.45868427876864109149241528181, 15.84204926078812993392710566943, 16.955137708274637112591005951146, 18.412471586709984214270520150579, 19.59279204503663133384034761288, 19.83740880491786774593009096038, 21.81506644338489528988924796537, 22.25365808152142611269426962316, 23.39621895353033191597499959754, 24.33336933084853235211982832042, 24.98556999238115666460800273701, 26.30249275995827202816446796647, 27.95103562233025577099509840379, 29.06202413438570368690218199926

Graph of the ZZ-function along the critical line