L(s) = 1 | + (0.909 − 0.415i)2-s + (−0.281 − 0.959i)3-s + (0.654 − 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.989 + 0.142i)7-s + (0.281 − 0.959i)8-s + (−0.841 + 0.540i)9-s + (0.415 − 0.909i)11-s + (−0.909 − 0.415i)12-s + (−0.989 − 0.142i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (−0.755 + 0.654i)17-s + (−0.540 + 0.841i)18-s + (0.654 − 0.755i)19-s + ⋯ |
L(s) = 1 | + (0.909 − 0.415i)2-s + (−0.281 − 0.959i)3-s + (0.654 − 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.989 + 0.142i)7-s + (0.281 − 0.959i)8-s + (−0.841 + 0.540i)9-s + (0.415 − 0.909i)11-s + (−0.909 − 0.415i)12-s + (−0.989 − 0.142i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (−0.755 + 0.654i)17-s + (−0.540 + 0.841i)18-s + (0.654 − 0.755i)19-s + ⋯ |
Λ(s)=(=(115s/2ΓR(s+1)L(s)(−0.996+0.0845i)Λ(1−s)
Λ(s)=(=(115s/2ΓR(s+1)L(s)(−0.996+0.0845i)Λ(1−s)
Degree: |
1 |
Conductor: |
115
= 5⋅23
|
Sign: |
−0.996+0.0845i
|
Analytic conductor: |
12.3584 |
Root analytic conductor: |
12.3584 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ115(48,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 115, (1: ), −0.996+0.0845i)
|
Particular Values
L(21) |
≈ |
−0.07109228344−1.677856383i |
L(21) |
≈ |
−0.07109228344−1.677856383i |
L(1) |
≈ |
0.9311879202−0.9229494465i |
L(1) |
≈ |
0.9311879202−0.9229494465i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 23 | 1 |
good | 2 | 1+(0.909−0.415i)T |
| 3 | 1+(−0.281−0.959i)T |
| 7 | 1+(−0.989+0.142i)T |
| 11 | 1+(0.415−0.909i)T |
| 13 | 1+(−0.989−0.142i)T |
| 17 | 1+(−0.755+0.654i)T |
| 19 | 1+(0.654−0.755i)T |
| 29 | 1+(0.654+0.755i)T |
| 31 | 1+(−0.959−0.281i)T |
| 37 | 1+(−0.540−0.841i)T |
| 41 | 1+(0.841+0.540i)T |
| 43 | 1+(−0.281−0.959i)T |
| 47 | 1−iT |
| 53 | 1+(0.989−0.142i)T |
| 59 | 1+(0.142−0.989i)T |
| 61 | 1+(−0.959−0.281i)T |
| 67 | 1+(0.909−0.415i)T |
| 71 | 1+(0.415+0.909i)T |
| 73 | 1+(−0.755−0.654i)T |
| 79 | 1+(0.142−0.989i)T |
| 83 | 1+(0.540+0.841i)T |
| 89 | 1+(0.959−0.281i)T |
| 97 | 1+(0.540−0.841i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−29.36425519973831640337082809744, −28.861707048993244129026515399322, −27.33268253590942522451372141906, −26.380639912370305333177258636545, −25.49715591708211938629846284644, −24.44631180050633292633836060906, −22.92473395482703045420983683825, −22.60838663264258432230819234538, −21.672378763999730066196881376977, −20.47023915451802958165308979785, −19.72112159833573661281953019716, −17.67367088068933239011025442183, −16.68835546664336944819599101049, −15.87692770607625431183554879458, −14.94956904649015088136131381572, −13.93386754552253295421343643785, −12.523335892085287530400084495650, −11.68411752322292677837647503666, −10.20598420840010938857169943366, −9.2006933180062952293800223946, −7.3518688345690150140842819710, −6.25712797724178380137060530066, −4.96578853601680047067123715615, −3.98223503979501127304532228317, −2.70627280273594073154454121643,
0.50571762023202468569608423831, 2.24092777138098893162271281768, 3.44116626244563594729154666911, 5.24747293871594010283543915442, 6.32245299582408540370077758433, 7.20304038172538642384210211338, 9.05105612696561701785359138981, 10.59633569866255802001989852297, 11.704804236947307109647455630184, 12.65013196078732911659984481547, 13.42338386466081512889900238575, 14.45868427876864109149241528181, 15.84204926078812993392710566943, 16.955137708274637112591005951146, 18.412471586709984214270520150579, 19.59279204503663133384034761288, 19.83740880491786774593009096038, 21.81506644338489528988924796537, 22.25365808152142611269426962316, 23.39621895353033191597499959754, 24.33336933084853235211982832042, 24.98556999238115666460800273701, 26.30249275995827202816446796647, 27.95103562233025577099509840379, 29.06202413438570368690218199926