L(s) = 1 | + (0.909 − 0.415i)2-s + (−0.281 − 0.959i)3-s + (0.654 − 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.989 + 0.142i)7-s + (0.281 − 0.959i)8-s + (−0.841 + 0.540i)9-s + (0.415 − 0.909i)11-s + (−0.909 − 0.415i)12-s + (−0.989 − 0.142i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (−0.755 + 0.654i)17-s + (−0.540 + 0.841i)18-s + (0.654 − 0.755i)19-s + ⋯ |
L(s) = 1 | + (0.909 − 0.415i)2-s + (−0.281 − 0.959i)3-s + (0.654 − 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.989 + 0.142i)7-s + (0.281 − 0.959i)8-s + (−0.841 + 0.540i)9-s + (0.415 − 0.909i)11-s + (−0.909 − 0.415i)12-s + (−0.989 − 0.142i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (−0.755 + 0.654i)17-s + (−0.540 + 0.841i)18-s + (0.654 − 0.755i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.996 + 0.0845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.996 + 0.0845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.07109228344 - 1.677856383i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.07109228344 - 1.677856383i\) |
\(L(1)\) |
\(\approx\) |
\(0.9311879202 - 0.9229494465i\) |
\(L(1)\) |
\(\approx\) |
\(0.9311879202 - 0.9229494465i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.909 - 0.415i)T \) |
| 3 | \( 1 + (-0.281 - 0.959i)T \) |
| 7 | \( 1 + (-0.989 + 0.142i)T \) |
| 11 | \( 1 + (0.415 - 0.909i)T \) |
| 13 | \( 1 + (-0.989 - 0.142i)T \) |
| 17 | \( 1 + (-0.755 + 0.654i)T \) |
| 19 | \( 1 + (0.654 - 0.755i)T \) |
| 29 | \( 1 + (0.654 + 0.755i)T \) |
| 31 | \( 1 + (-0.959 - 0.281i)T \) |
| 37 | \( 1 + (-0.540 - 0.841i)T \) |
| 41 | \( 1 + (0.841 + 0.540i)T \) |
| 43 | \( 1 + (-0.281 - 0.959i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.989 - 0.142i)T \) |
| 59 | \( 1 + (0.142 - 0.989i)T \) |
| 61 | \( 1 + (-0.959 - 0.281i)T \) |
| 67 | \( 1 + (0.909 - 0.415i)T \) |
| 71 | \( 1 + (0.415 + 0.909i)T \) |
| 73 | \( 1 + (-0.755 - 0.654i)T \) |
| 79 | \( 1 + (0.142 - 0.989i)T \) |
| 83 | \( 1 + (0.540 + 0.841i)T \) |
| 89 | \( 1 + (0.959 - 0.281i)T \) |
| 97 | \( 1 + (0.540 - 0.841i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.36425519973831640337082809744, −28.861707048993244129026515399322, −27.33268253590942522451372141906, −26.380639912370305333177258636545, −25.49715591708211938629846284644, −24.44631180050633292633836060906, −22.92473395482703045420983683825, −22.60838663264258432230819234538, −21.672378763999730066196881376977, −20.47023915451802958165308979785, −19.72112159833573661281953019716, −17.67367088068933239011025442183, −16.68835546664336944819599101049, −15.87692770607625431183554879458, −14.94956904649015088136131381572, −13.93386754552253295421343643785, −12.523335892085287530400084495650, −11.68411752322292677837647503666, −10.20598420840010938857169943366, −9.2006933180062952293800223946, −7.3518688345690150140842819710, −6.25712797724178380137060530066, −4.96578853601680047067123715615, −3.98223503979501127304532228317, −2.70627280273594073154454121643,
0.50571762023202468569608423831, 2.24092777138098893162271281768, 3.44116626244563594729154666911, 5.24747293871594010283543915442, 6.32245299582408540370077758433, 7.20304038172538642384210211338, 9.05105612696561701785359138981, 10.59633569866255802001989852297, 11.704804236947307109647455630184, 12.65013196078732911659984481547, 13.42338386466081512889900238575, 14.45868427876864109149241528181, 15.84204926078812993392710566943, 16.955137708274637112591005951146, 18.412471586709984214270520150579, 19.59279204503663133384034761288, 19.83740880491786774593009096038, 21.81506644338489528988924796537, 22.25365808152142611269426962316, 23.39621895353033191597499959754, 24.33336933084853235211982832042, 24.98556999238115666460800273701, 26.30249275995827202816446796647, 27.95103562233025577099509840379, 29.06202413438570368690218199926