L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.793 + 0.608i)3-s + (0.866 − 0.5i)4-s + (−0.991 − 0.130i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.258 + 0.965i)9-s + (0.991 − 0.130i)10-s + (0.130 + 0.991i)11-s + (0.991 + 0.130i)12-s + i·13-s + (−0.707 − 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (0.965 − 0.258i)19-s + (−0.923 + 0.382i)20-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.793 + 0.608i)3-s + (0.866 − 0.5i)4-s + (−0.991 − 0.130i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.258 + 0.965i)9-s + (0.991 − 0.130i)10-s + (0.130 + 0.991i)11-s + (0.991 + 0.130i)12-s + i·13-s + (−0.707 − 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (0.965 − 0.258i)19-s + (−0.923 + 0.382i)20-s + ⋯ |
Λ(s)=(=(119s/2ΓR(s)L(s)(−0.0713+0.997i)Λ(1−s)
Λ(s)=(=(119s/2ΓR(s)L(s)(−0.0713+0.997i)Λ(1−s)
Degree: |
1 |
Conductor: |
119
= 7⋅17
|
Sign: |
−0.0713+0.997i
|
Analytic conductor: |
0.552633 |
Root analytic conductor: |
0.552633 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ119(108,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 119, (0: ), −0.0713+0.997i)
|
Particular Values
L(21) |
≈ |
0.4951267042+0.5318105403i |
L(21) |
≈ |
0.4951267042+0.5318105403i |
L(1) |
≈ |
0.6899323970+0.3353795698i |
L(1) |
≈ |
0.6899323970+0.3353795698i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 17 | 1 |
good | 2 | 1+(−0.965+0.258i)T |
| 3 | 1+(0.793+0.608i)T |
| 5 | 1+(−0.991−0.130i)T |
| 11 | 1+(0.130+0.991i)T |
| 13 | 1+iT |
| 19 | 1+(0.965−0.258i)T |
| 23 | 1+(−0.793+0.608i)T |
| 29 | 1+(0.382+0.923i)T |
| 31 | 1+(−0.793−0.608i)T |
| 37 | 1+(−0.130+0.991i)T |
| 41 | 1+(0.382−0.923i)T |
| 43 | 1+(0.707−0.707i)T |
| 47 | 1+(−0.866−0.5i)T |
| 53 | 1+(0.258−0.965i)T |
| 59 | 1+(−0.965−0.258i)T |
| 61 | 1+(−0.608−0.793i)T |
| 67 | 1+(0.5+0.866i)T |
| 71 | 1+(0.923−0.382i)T |
| 73 | 1+(0.608−0.793i)T |
| 79 | 1+(0.793−0.608i)T |
| 83 | 1+(0.707+0.707i)T |
| 89 | 1+(0.866+0.5i)T |
| 97 | 1+(−0.382−0.923i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−28.89658063062128614713407834824, −27.6138020165458738509415645418, −26.80851306892662534928031225482, −26.114607743125997431710130393874, −24.78795225532500638238144238641, −24.29555005416576221107600253432, −22.86587559162864487481712391319, −21.34076165679117855575886405454, −20.12572467827732231243273409924, −19.66309803377356959809862516596, −18.63795450653537831689618348821, −17.913391187506325463058585077300, −16.340868081960626918313657352145, −15.48998714871814172047316977708, −14.26187784325509520200835035552, −12.75864139811432739012308087178, −11.83425392594324267793638341745, −10.68820418125544644749117932660, −9.26918282745927556110812793510, −8.12323779737028498931978706412, −7.640675658421935268549346632, −6.23544825498695042963582002340, −3.677284947670670502513923902447, −2.75589075801952795210892531798, −0.90243495687237910624343506433,
1.91452019348737441147343256374, 3.55486516003972318036188014848, 4.940413189203700163937931200242, 7.00936607740722499657524584211, 7.83708398404989188084341418203, 8.98472861352680745592243650322, 9.79804886449151418993721281542, 11.09495813183395162589193222312, 12.16950497032075393985845615304, 14.06881327946060495186744176725, 15.11113028148837338536524507245, 15.87187407780925947284206584814, 16.71821595850917588184220308483, 18.18412931313489168886672780098, 19.27814278641791848620753242049, 20.022782022322673284110841954643, 20.73067233093361642054046778022, 22.17216486127496386029915326988, 23.64068521645688280336253280531, 24.51274566987994896727356042437, 25.77096633674278074607857798641, 26.30120272907496794925220023961, 27.43822181244991809728255940733, 27.891057396868815811900346350340, 29.07076653000384001786053886003