Properties

Label 1-119-119.108-r0-0-0
Degree 11
Conductor 119119
Sign 0.0713+0.997i-0.0713 + 0.997i
Analytic cond. 0.5526330.552633
Root an. cond. 0.5526330.552633
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.965 + 0.258i)2-s + (0.793 + 0.608i)3-s + (0.866 − 0.5i)4-s + (−0.991 − 0.130i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.258 + 0.965i)9-s + (0.991 − 0.130i)10-s + (0.130 + 0.991i)11-s + (0.991 + 0.130i)12-s + i·13-s + (−0.707 − 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (0.965 − 0.258i)19-s + (−0.923 + 0.382i)20-s + ⋯
L(s)  = 1  + (−0.965 + 0.258i)2-s + (0.793 + 0.608i)3-s + (0.866 − 0.5i)4-s + (−0.991 − 0.130i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.258 + 0.965i)9-s + (0.991 − 0.130i)10-s + (0.130 + 0.991i)11-s + (0.991 + 0.130i)12-s + i·13-s + (−0.707 − 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (0.965 − 0.258i)19-s + (−0.923 + 0.382i)20-s + ⋯

Functional equation

Λ(s)=(119s/2ΓR(s)L(s)=((0.0713+0.997i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0713 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(119s/2ΓR(s)L(s)=((0.0713+0.997i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0713 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 119119    =    7177 \cdot 17
Sign: 0.0713+0.997i-0.0713 + 0.997i
Analytic conductor: 0.5526330.552633
Root analytic conductor: 0.5526330.552633
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ119(108,)\chi_{119} (108, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 119, (0: ), 0.0713+0.997i)(1,\ 119,\ (0:\ ),\ -0.0713 + 0.997i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.4951267042+0.5318105403i0.4951267042 + 0.5318105403i
L(12)L(\frac12) \approx 0.4951267042+0.5318105403i0.4951267042 + 0.5318105403i
L(1)L(1) \approx 0.6899323970+0.3353795698i0.6899323970 + 0.3353795698i
L(1)L(1) \approx 0.6899323970+0.3353795698i0.6899323970 + 0.3353795698i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
17 1 1
good2 1+(0.965+0.258i)T 1 + (-0.965 + 0.258i)T
3 1+(0.793+0.608i)T 1 + (0.793 + 0.608i)T
5 1+(0.9910.130i)T 1 + (-0.991 - 0.130i)T
11 1+(0.130+0.991i)T 1 + (0.130 + 0.991i)T
13 1+iT 1 + iT
19 1+(0.9650.258i)T 1 + (0.965 - 0.258i)T
23 1+(0.793+0.608i)T 1 + (-0.793 + 0.608i)T
29 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
31 1+(0.7930.608i)T 1 + (-0.793 - 0.608i)T
37 1+(0.130+0.991i)T 1 + (-0.130 + 0.991i)T
41 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
43 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
47 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
53 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
59 1+(0.9650.258i)T 1 + (-0.965 - 0.258i)T
61 1+(0.6080.793i)T 1 + (-0.608 - 0.793i)T
67 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
71 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
73 1+(0.6080.793i)T 1 + (0.608 - 0.793i)T
79 1+(0.7930.608i)T 1 + (0.793 - 0.608i)T
83 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
89 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
97 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−28.89658063062128614713407834824, −27.6138020165458738509415645418, −26.80851306892662534928031225482, −26.114607743125997431710130393874, −24.78795225532500638238144238641, −24.29555005416576221107600253432, −22.86587559162864487481712391319, −21.34076165679117855575886405454, −20.12572467827732231243273409924, −19.66309803377356959809862516596, −18.63795450653537831689618348821, −17.913391187506325463058585077300, −16.340868081960626918313657352145, −15.48998714871814172047316977708, −14.26187784325509520200835035552, −12.75864139811432739012308087178, −11.83425392594324267793638341745, −10.68820418125544644749117932660, −9.26918282745927556110812793510, −8.12323779737028498931978706412, −7.640675658421935268549346632, −6.23544825498695042963582002340, −3.677284947670670502513923902447, −2.75589075801952795210892531798, −0.90243495687237910624343506433, 1.91452019348737441147343256374, 3.55486516003972318036188014848, 4.940413189203700163937931200242, 7.00936607740722499657524584211, 7.83708398404989188084341418203, 8.98472861352680745592243650322, 9.79804886449151418993721281542, 11.09495813183395162589193222312, 12.16950497032075393985845615304, 14.06881327946060495186744176725, 15.11113028148837338536524507245, 15.87187407780925947284206584814, 16.71821595850917588184220308483, 18.18412931313489168886672780098, 19.27814278641791848620753242049, 20.022782022322673284110841954643, 20.73067233093361642054046778022, 22.17216486127496386029915326988, 23.64068521645688280336253280531, 24.51274566987994896727356042437, 25.77096633674278074607857798641, 26.30120272907496794925220023961, 27.43822181244991809728255940733, 27.891057396868815811900346350340, 29.07076653000384001786053886003

Graph of the ZZ-function along the critical line