L(s) = 1 | + (0.965 − 0.258i)2-s + (−0.608 + 0.793i)3-s + (0.866 − 0.5i)4-s + (0.130 − 0.991i)5-s + (−0.382 + 0.923i)6-s + (0.707 − 0.707i)8-s + (−0.258 − 0.965i)9-s + (−0.130 − 0.991i)10-s + (−0.991 + 0.130i)11-s + (−0.130 + 0.991i)12-s − i·13-s + (0.707 + 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (0.965 − 0.258i)19-s + (−0.382 − 0.923i)20-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (−0.608 + 0.793i)3-s + (0.866 − 0.5i)4-s + (0.130 − 0.991i)5-s + (−0.382 + 0.923i)6-s + (0.707 − 0.707i)8-s + (−0.258 − 0.965i)9-s + (−0.130 − 0.991i)10-s + (−0.991 + 0.130i)11-s + (−0.130 + 0.991i)12-s − i·13-s + (0.707 + 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (0.965 − 0.258i)19-s + (−0.382 − 0.923i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.100 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.100 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.720098173 - 1.554331372i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.720098173 - 1.554331372i\) |
\(L(1)\) |
\(\approx\) |
\(1.472723223 - 0.4767351903i\) |
\(L(1)\) |
\(\approx\) |
\(1.472723223 - 0.4767351903i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.965 - 0.258i)T \) |
| 3 | \( 1 + (-0.608 + 0.793i)T \) |
| 5 | \( 1 + (0.130 - 0.991i)T \) |
| 11 | \( 1 + (-0.991 + 0.130i)T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 + (0.965 - 0.258i)T \) |
| 23 | \( 1 + (-0.608 - 0.793i)T \) |
| 29 | \( 1 + (0.923 - 0.382i)T \) |
| 31 | \( 1 + (0.608 - 0.793i)T \) |
| 37 | \( 1 + (0.991 + 0.130i)T \) |
| 41 | \( 1 + (-0.923 - 0.382i)T \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 + (0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.258 + 0.965i)T \) |
| 59 | \( 1 + (-0.965 - 0.258i)T \) |
| 61 | \( 1 + (-0.793 + 0.608i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.382 - 0.923i)T \) |
| 73 | \( 1 + (0.793 + 0.608i)T \) |
| 79 | \( 1 + (0.608 + 0.793i)T \) |
| 83 | \( 1 + (0.707 + 0.707i)T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.923 - 0.382i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.16801669056498336048110030468, −28.74100205799734592693196778714, −26.82311942914898094086080311872, −25.8255183088102727668875981294, −24.88983979338560899174785463331, −23.6677531217015613348495772440, −23.27716899242652039122050965864, −22.08670686925369609563848906490, −21.43716015894558612311397081563, −19.872275793941314999800879647946, −18.67196365114659127681150016036, −17.792771839345826223669749696149, −16.50098863609834257656982838410, −15.508921571637078432105064908845, −14.05736632565921326283491823856, −13.569351069199547294765031071461, −12.17172442922332550066204704394, −11.37394296190668425562450452014, −10.29702087520379520656293763639, −7.95199792305535054846853346973, −7.02145226324608095830103707247, −6.10951113217221445928760850807, −4.98179373466007111977717214801, −3.19360326635810246796171950153, −1.931439818847609255593539439530,
0.746558556289842788367235680184, 2.835170432845601337968433312570, 4.36957418383459697669089614833, 5.1891613699808632607166857857, 6.09242850834953851671974829246, 7.9624232658125126299746127164, 9.699389679827234078275723213117, 10.5546339809542895853550317341, 11.82541420987066567382354352241, 12.68177643484710917579464909065, 13.749530372918222962177706333539, 15.293435271708766231903762225472, 15.88030167644824535526966746333, 16.90493327538904391962999617585, 18.187502992823092690430523949528, 20.07218763957322466833231035318, 20.593170379761345576461541554799, 21.51493053765241007650049030098, 22.49189013317486573003052569742, 23.410528388434516398352204572357, 24.289953302921034107166734788748, 25.377166115023802524839911866700, 26.75704266686276185609780502718, 28.11203849855328271827319270797, 28.58018145914246863004607892997