L(s) = 1 | + (0.866 − 0.5i)2-s + (0.258 + 0.965i)3-s + (0.5 − 0.866i)4-s + (0.965 + 0.258i)5-s + (0.707 + 0.707i)6-s − i·8-s + (−0.866 + 0.5i)9-s + (0.965 − 0.258i)10-s + (0.965 − 0.258i)11-s + (0.965 + 0.258i)12-s + 13-s + i·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.866 + 0.5i)19-s + (0.707 − 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.258 + 0.965i)3-s + (0.5 − 0.866i)4-s + (0.965 + 0.258i)5-s + (0.707 + 0.707i)6-s − i·8-s + (−0.866 + 0.5i)9-s + (0.965 − 0.258i)10-s + (0.965 − 0.258i)11-s + (0.965 + 0.258i)12-s + 13-s + i·15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.866 + 0.5i)19-s + (0.707 − 0.707i)20-s + ⋯ |
Λ(s)=(=(119s/2ΓR(s+1)L(s)(0.998+0.0590i)Λ(1−s)
Λ(s)=(=(119s/2ΓR(s+1)L(s)(0.998+0.0590i)Λ(1−s)
Degree: |
1 |
Conductor: |
119
= 7⋅17
|
Sign: |
0.998+0.0590i
|
Analytic conductor: |
12.7883 |
Root analytic conductor: |
12.7883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ119(117,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 119, (1: ), 0.998+0.0590i)
|
Particular Values
L(21) |
≈ |
3.802318553+0.1123720924i |
L(21) |
≈ |
3.802318553+0.1123720924i |
L(1) |
≈ |
2.249922015+0.01623216431i |
L(1) |
≈ |
2.249922015+0.01623216431i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 17 | 1 |
good | 2 | 1+(0.866−0.5i)T |
| 3 | 1+(0.258+0.965i)T |
| 5 | 1+(0.965+0.258i)T |
| 11 | 1+(0.965−0.258i)T |
| 13 | 1+T |
| 19 | 1+(−0.866+0.5i)T |
| 23 | 1+(−0.258+0.965i)T |
| 29 | 1+(0.707−0.707i)T |
| 31 | 1+(0.258+0.965i)T |
| 37 | 1+(0.965+0.258i)T |
| 41 | 1+(−0.707−0.707i)T |
| 43 | 1−iT |
| 47 | 1+(−0.5−0.866i)T |
| 53 | 1+(−0.866−0.5i)T |
| 59 | 1+(−0.866−0.5i)T |
| 61 | 1+(−0.258+0.965i)T |
| 67 | 1+(−0.5+0.866i)T |
| 71 | 1+(−0.707+0.707i)T |
| 73 | 1+(−0.258−0.965i)T |
| 79 | 1+(−0.258+0.965i)T |
| 83 | 1−iT |
| 89 | 1+(−0.5−0.866i)T |
| 97 | 1+(−0.707+0.707i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−29.2366490624898800479386476028, −28.13353689705530485483042961213, −26.25680758779544932958310020641, −25.45133946390120605838160475134, −24.854325136060993826988515909827, −23.91546815231340122513309875537, −22.935769522761471634705533235577, −21.86555812538144399943570225192, −20.77013703202387080386049288933, −19.86320303243607646138724839638, −18.31291123151834877830404535156, −17.38324301360664024745910190366, −16.497484763916757985216837930295, −14.87693767438535531381182450784, −14.04409980411712565298603421256, −13.172295221397501629675902723260, −12.38903253319277973226570177910, −11.10428734508036942819373408730, −9.13018481223440245253939651486, −8.11691171499340237101353818252, −6.52931804179828686321094884738, −6.16119781856090935375483819544, −4.48609168875075066949586434812, −2.82173523928539309258399240640, −1.50730351107540076491588590122,
1.66964190584675517191055878309, 3.148820570718655601170781698319, 4.19207712077848890037897358089, 5.58587414013420882282616172723, 6.464128784606674833106805852351, 8.74093621045659349462629139347, 9.86813501674525895398427633486, 10.70794646603880999468173880237, 11.78510280070205889850113020509, 13.403653109877277378084340669527, 14.10613346725756424340116207224, 15.02718521769007960706347601356, 16.15346103657557562082884745544, 17.34749077030737839873596098040, 18.8991628080248716450566505410, 19.99341465326220808863649552053, 21.05383118398341826301861977989, 21.61549298514984109089162130269, 22.47632427498947247247283733089, 23.48540169722834527554402419556, 25.095228016518249830640386935788, 25.544786448591587776329008713694, 27.042582252319064947215122728131, 28.032471254572960007633677297586, 28.94957905348786567382095993260