Properties

Label 1-119-119.39-r1-0-0
Degree 11
Conductor 119119
Sign 0.2250.974i-0.225 - 0.974i
Analytic cond. 12.788312.7883
Root an. cond. 12.788312.7883
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.258 − 0.965i)2-s + (0.991 − 0.130i)3-s + (−0.866 + 0.5i)4-s + (0.793 − 0.608i)5-s + (−0.382 − 0.923i)6-s + (0.707 + 0.707i)8-s + (0.965 − 0.258i)9-s + (−0.793 − 0.608i)10-s + (0.608 − 0.793i)11-s + (−0.793 + 0.608i)12-s + i·13-s + (0.707 − 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (−0.258 − 0.965i)19-s + (−0.382 + 0.923i)20-s + ⋯
L(s)  = 1  + (−0.258 − 0.965i)2-s + (0.991 − 0.130i)3-s + (−0.866 + 0.5i)4-s + (0.793 − 0.608i)5-s + (−0.382 − 0.923i)6-s + (0.707 + 0.707i)8-s + (0.965 − 0.258i)9-s + (−0.793 − 0.608i)10-s + (0.608 − 0.793i)11-s + (−0.793 + 0.608i)12-s + i·13-s + (0.707 − 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (−0.258 − 0.965i)19-s + (−0.382 + 0.923i)20-s + ⋯

Functional equation

Λ(s)=(119s/2ΓR(s+1)L(s)=((0.2250.974i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.225 - 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(119s/2ΓR(s+1)L(s)=((0.2250.974i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.225 - 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 119119    =    7177 \cdot 17
Sign: 0.2250.974i-0.225 - 0.974i
Analytic conductor: 12.788312.7883
Root analytic conductor: 12.788312.7883
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ119(39,)\chi_{119} (39, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 119, (1: ), 0.2250.974i)(1,\ 119,\ (1:\ ),\ -0.225 - 0.974i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.4832653981.866674439i1.483265398 - 1.866674439i
L(12)L(\frac12) \approx 1.4832653981.866674439i1.483265398 - 1.866674439i
L(1)L(1) \approx 1.2140810130.8432104931i1.214081013 - 0.8432104931i
L(1)L(1) \approx 1.2140810130.8432104931i1.214081013 - 0.8432104931i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
17 1 1
good2 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
3 1+(0.9910.130i)T 1 + (0.991 - 0.130i)T
5 1+(0.7930.608i)T 1 + (0.793 - 0.608i)T
11 1+(0.6080.793i)T 1 + (0.608 - 0.793i)T
13 1+iT 1 + iT
19 1+(0.2580.965i)T 1 + (-0.258 - 0.965i)T
23 1+(0.991+0.130i)T 1 + (0.991 + 0.130i)T
29 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
31 1+(0.991+0.130i)T 1 + (-0.991 + 0.130i)T
37 1+(0.6080.793i)T 1 + (-0.608 - 0.793i)T
41 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
43 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
47 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
53 1+(0.965+0.258i)T 1 + (0.965 + 0.258i)T
59 1+(0.2580.965i)T 1 + (0.258 - 0.965i)T
61 1+(0.130+0.991i)T 1 + (-0.130 + 0.991i)T
67 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
71 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
73 1+(0.130+0.991i)T 1 + (0.130 + 0.991i)T
79 1+(0.9910.130i)T 1 + (-0.991 - 0.130i)T
83 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
89 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
97 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−29.1950833370495878655847298102, −27.64234371831753463098288182031, −26.9864628211382598374521401634, −25.82448990859460349391757126692, −25.29112159792188229091906770095, −24.642757450176559362523851951761, −23.065799783086659304326800542433, −22.22297606680319633807617068053, −20.99409704119822077329845960096, −19.76630421695744437166960192564, −18.67860666658343085521763780588, −17.80253777921432857156093451735, −16.730702683980873751941272631464, −15.23466370955151568002831266773, −14.74518822294305557413392122876, −13.755408948542888177438073589436, −12.76149081058950250854290388201, −10.40186149272452179532429637107, −9.71791843744150836523579239402, −8.58831306529615990806890090699, −7.4209877904138599971861561009, −6.40128353484051748759701272665, −4.92910128314827657746475862006, −3.370042957051767265435378476797, −1.65407866589513028391805883117, 1.12447605245480824909521371182, 2.25906778262695269920852603274, 3.608346824971820732572987709974, 4.92746564605804716232209571155, 6.894771127347114405516804066965, 8.742411789880329852636793625132, 8.95496611814468944694838839721, 10.18694081952406863687482066396, 11.597889702305038053038166922180, 12.89077308942057555695063259222, 13.644547792616944758860867965630, 14.48985283244564122190046604096, 16.32546008524707026971668701337, 17.389378540213539948158755073947, 18.58278741021318373363145958215, 19.48426238997443170875735544477, 20.300391051731453516441468252865, 21.48967069750885966335875953637, 21.70413490816358280429986564197, 23.61042693763526256419313862383, 24.717278019410623169650403482, 25.7266444787959404613286806753, 26.623065733998024163430498749750, 27.592733136664840974737607910917, 28.80986382805727912076158297835

Graph of the ZZ-function along the critical line