L(s) = 1 | + (−0.258 − 0.965i)2-s + (0.991 − 0.130i)3-s + (−0.866 + 0.5i)4-s + (0.793 − 0.608i)5-s + (−0.382 − 0.923i)6-s + (0.707 + 0.707i)8-s + (0.965 − 0.258i)9-s + (−0.793 − 0.608i)10-s + (0.608 − 0.793i)11-s + (−0.793 + 0.608i)12-s + i·13-s + (0.707 − 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (−0.258 − 0.965i)19-s + (−0.382 + 0.923i)20-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)2-s + (0.991 − 0.130i)3-s + (−0.866 + 0.5i)4-s + (0.793 − 0.608i)5-s + (−0.382 − 0.923i)6-s + (0.707 + 0.707i)8-s + (0.965 − 0.258i)9-s + (−0.793 − 0.608i)10-s + (0.608 − 0.793i)11-s + (−0.793 + 0.608i)12-s + i·13-s + (0.707 − 0.707i)15-s + (0.5 − 0.866i)16-s + (−0.5 − 0.866i)18-s + (−0.258 − 0.965i)19-s + (−0.382 + 0.923i)20-s + ⋯ |
Λ(s)=(=(119s/2ΓR(s+1)L(s)(−0.225−0.974i)Λ(1−s)
Λ(s)=(=(119s/2ΓR(s+1)L(s)(−0.225−0.974i)Λ(1−s)
Degree: |
1 |
Conductor: |
119
= 7⋅17
|
Sign: |
−0.225−0.974i
|
Analytic conductor: |
12.7883 |
Root analytic conductor: |
12.7883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ119(39,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 119, (1: ), −0.225−0.974i)
|
Particular Values
L(21) |
≈ |
1.483265398−1.866674439i |
L(21) |
≈ |
1.483265398−1.866674439i |
L(1) |
≈ |
1.214081013−0.8432104931i |
L(1) |
≈ |
1.214081013−0.8432104931i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 17 | 1 |
good | 2 | 1+(−0.258−0.965i)T |
| 3 | 1+(0.991−0.130i)T |
| 5 | 1+(0.793−0.608i)T |
| 11 | 1+(0.608−0.793i)T |
| 13 | 1+iT |
| 19 | 1+(−0.258−0.965i)T |
| 23 | 1+(0.991+0.130i)T |
| 29 | 1+(0.923+0.382i)T |
| 31 | 1+(−0.991+0.130i)T |
| 37 | 1+(−0.608−0.793i)T |
| 41 | 1+(−0.923+0.382i)T |
| 43 | 1+(−0.707−0.707i)T |
| 47 | 1+(−0.866−0.5i)T |
| 53 | 1+(0.965+0.258i)T |
| 59 | 1+(0.258−0.965i)T |
| 61 | 1+(−0.130+0.991i)T |
| 67 | 1+(0.5+0.866i)T |
| 71 | 1+(−0.382+0.923i)T |
| 73 | 1+(0.130+0.991i)T |
| 79 | 1+(−0.991−0.130i)T |
| 83 | 1+(0.707−0.707i)T |
| 89 | 1+(0.866+0.5i)T |
| 97 | 1+(0.923+0.382i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−29.1950833370495878655847298102, −27.64234371831753463098288182031, −26.9864628211382598374521401634, −25.82448990859460349391757126692, −25.29112159792188229091906770095, −24.642757450176559362523851951761, −23.065799783086659304326800542433, −22.22297606680319633807617068053, −20.99409704119822077329845960096, −19.76630421695744437166960192564, −18.67860666658343085521763780588, −17.80253777921432857156093451735, −16.730702683980873751941272631464, −15.23466370955151568002831266773, −14.74518822294305557413392122876, −13.755408948542888177438073589436, −12.76149081058950250854290388201, −10.40186149272452179532429637107, −9.71791843744150836523579239402, −8.58831306529615990806890090699, −7.4209877904138599971861561009, −6.40128353484051748759701272665, −4.92910128314827657746475862006, −3.370042957051767265435378476797, −1.65407866589513028391805883117,
1.12447605245480824909521371182, 2.25906778262695269920852603274, 3.608346824971820732572987709974, 4.92746564605804716232209571155, 6.894771127347114405516804066965, 8.742411789880329852636793625132, 8.95496611814468944694838839721, 10.18694081952406863687482066396, 11.597889702305038053038166922180, 12.89077308942057555695063259222, 13.644547792616944758860867965630, 14.48985283244564122190046604096, 16.32546008524707026971668701337, 17.389378540213539948158755073947, 18.58278741021318373363145958215, 19.48426238997443170875735544477, 20.300391051731453516441468252865, 21.48967069750885966335875953637, 21.70413490816358280429986564197, 23.61042693763526256419313862383, 24.717278019410623169650403482, 25.7266444787959404613286806753, 26.623065733998024163430498749750, 27.592733136664840974737607910917, 28.80986382805727912076158297835