L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.923 + 0.382i)3-s + i·4-s + (0.382 + 0.923i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.382 + 0.923i)10-s + (−0.923 − 0.382i)11-s + (−0.382 − 0.923i)12-s + i·13-s + (−0.707 − 0.707i)15-s − 16-s + 18-s + (−0.707 − 0.707i)19-s + (−0.923 + 0.382i)20-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.923 + 0.382i)3-s + i·4-s + (0.382 + 0.923i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.382 + 0.923i)10-s + (−0.923 − 0.382i)11-s + (−0.382 − 0.923i)12-s + i·13-s + (−0.707 − 0.707i)15-s − 16-s + 18-s + (−0.707 − 0.707i)19-s + (−0.923 + 0.382i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.837 + 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.837 + 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3051174217 + 1.024455680i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3051174217 + 1.024455680i\) |
\(L(1)\) |
\(\approx\) |
\(0.7696574886 + 0.7856176571i\) |
\(L(1)\) |
\(\approx\) |
\(0.7696574886 + 0.7856176571i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (-0.923 + 0.382i)T \) |
| 5 | \( 1 + (0.382 + 0.923i)T \) |
| 11 | \( 1 + (-0.923 - 0.382i)T \) |
| 13 | \( 1 + iT \) |
| 19 | \( 1 + (-0.707 - 0.707i)T \) |
| 23 | \( 1 + (0.923 + 0.382i)T \) |
| 29 | \( 1 + (0.382 + 0.923i)T \) |
| 31 | \( 1 + (0.923 - 0.382i)T \) |
| 37 | \( 1 + (0.923 - 0.382i)T \) |
| 41 | \( 1 + (0.382 - 0.923i)T \) |
| 43 | \( 1 + (0.707 - 0.707i)T \) |
| 47 | \( 1 + iT \) |
| 53 | \( 1 + (0.707 + 0.707i)T \) |
| 59 | \( 1 + (0.707 - 0.707i)T \) |
| 61 | \( 1 + (-0.382 + 0.923i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.923 - 0.382i)T \) |
| 73 | \( 1 + (0.382 + 0.923i)T \) |
| 79 | \( 1 + (-0.923 - 0.382i)T \) |
| 83 | \( 1 + (0.707 + 0.707i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (-0.382 - 0.923i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.79070472558517166282218748921, −28.17389707179300093345074642076, −27.213036997454679282010474818889, −25.17339117449492446344633289800, −24.47603604057743674868557671008, −23.31720473672543548342433352806, −22.837610483617573696785639800041, −21.44281856868729394940114383641, −20.821321678635067728863531651683, −19.60799540699056778020619013803, −18.4045168506845615608586417952, −17.459277861528155450055261375385, −16.22254030658435231997424240109, −15.08511929331746285229238364334, −13.378010136822308845406248022362, −12.855125191271579429324484962544, −11.99099827843419773070615786398, −10.672261055483333086470689326522, −9.86756509188240645822975513780, −8.0750664319442218718092730087, −6.30869555046806777906701195417, −5.32859378311603003478821801512, −4.484942650508736821385135526000, −2.435695877007640825270315520288, −0.94226626654568488407049412610,
2.710743645300153955966141937101, 4.21344285000112689542449543791, 5.42593378975691107593390805951, 6.43469033814034479184759804130, 7.31709464817159516905941144260, 9.103979924250952098831172687299, 10.64576823112022882195086097694, 11.4653915106826299222953840908, 12.80898724411866776705321553768, 13.89858471466087487461495842611, 15.066930211938604178167683393464, 15.910758678693970966186168870503, 17.00322562398669996567434020770, 17.86648716236631204309483531110, 18.924055770431924988909492549204, 21.0958913237535286996821140067, 21.54588568541872962272474609959, 22.510506411295029000170482782884, 23.42556525777692757799304970331, 24.108451744570359839141313886838, 25.61795311758925163699546443217, 26.39392496602285169255548171621, 27.221225329299839092866179294211, 28.791049900298096151263146058586, 29.541148792128097610381720385191