L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.923 + 0.382i)3-s + i·4-s + (0.382 + 0.923i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.382 + 0.923i)10-s + (−0.923 − 0.382i)11-s + (−0.382 − 0.923i)12-s + i·13-s + (−0.707 − 0.707i)15-s − 16-s + 18-s + (−0.707 − 0.707i)19-s + (−0.923 + 0.382i)20-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.923 + 0.382i)3-s + i·4-s + (0.382 + 0.923i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.382 + 0.923i)10-s + (−0.923 − 0.382i)11-s + (−0.382 − 0.923i)12-s + i·13-s + (−0.707 − 0.707i)15-s − 16-s + 18-s + (−0.707 − 0.707i)19-s + (−0.923 + 0.382i)20-s + ⋯ |
Λ(s)=(=(119s/2ΓR(s)L(s)(−0.837+0.547i)Λ(1−s)
Λ(s)=(=(119s/2ΓR(s)L(s)(−0.837+0.547i)Λ(1−s)
Degree: |
1 |
Conductor: |
119
= 7⋅17
|
Sign: |
−0.837+0.547i
|
Analytic conductor: |
0.552633 |
Root analytic conductor: |
0.552633 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ119(6,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 119, (0: ), −0.837+0.547i)
|
Particular Values
L(21) |
≈ |
0.3051174217+1.024455680i |
L(21) |
≈ |
0.3051174217+1.024455680i |
L(1) |
≈ |
0.7696574886+0.7856176571i |
L(1) |
≈ |
0.7696574886+0.7856176571i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 17 | 1 |
good | 2 | 1+(0.707+0.707i)T |
| 3 | 1+(−0.923+0.382i)T |
| 5 | 1+(0.382+0.923i)T |
| 11 | 1+(−0.923−0.382i)T |
| 13 | 1+iT |
| 19 | 1+(−0.707−0.707i)T |
| 23 | 1+(0.923+0.382i)T |
| 29 | 1+(0.382+0.923i)T |
| 31 | 1+(0.923−0.382i)T |
| 37 | 1+(0.923−0.382i)T |
| 41 | 1+(0.382−0.923i)T |
| 43 | 1+(0.707−0.707i)T |
| 47 | 1+iT |
| 53 | 1+(0.707+0.707i)T |
| 59 | 1+(0.707−0.707i)T |
| 61 | 1+(−0.382+0.923i)T |
| 67 | 1−T |
| 71 | 1+(0.923−0.382i)T |
| 73 | 1+(0.382+0.923i)T |
| 79 | 1+(−0.923−0.382i)T |
| 83 | 1+(0.707+0.707i)T |
| 89 | 1−iT |
| 97 | 1+(−0.382−0.923i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−28.79070472558517166282218748921, −28.17389707179300093345074642076, −27.213036997454679282010474818889, −25.17339117449492446344633289800, −24.47603604057743674868557671008, −23.31720473672543548342433352806, −22.837610483617573696785639800041, −21.44281856868729394940114383641, −20.821321678635067728863531651683, −19.60799540699056778020619013803, −18.4045168506845615608586417952, −17.459277861528155450055261375385, −16.22254030658435231997424240109, −15.08511929331746285229238364334, −13.378010136822308845406248022362, −12.855125191271579429324484962544, −11.99099827843419773070615786398, −10.672261055483333086470689326522, −9.86756509188240645822975513780, −8.0750664319442218718092730087, −6.30869555046806777906701195417, −5.32859378311603003478821801512, −4.484942650508736821385135526000, −2.435695877007640825270315520288, −0.94226626654568488407049412610,
2.710743645300153955966141937101, 4.21344285000112689542449543791, 5.42593378975691107593390805951, 6.43469033814034479184759804130, 7.31709464817159516905941144260, 9.103979924250952098831172687299, 10.64576823112022882195086097694, 11.4653915106826299222953840908, 12.80898724411866776705321553768, 13.89858471466087487461495842611, 15.066930211938604178167683393464, 15.910758678693970966186168870503, 17.00322562398669996567434020770, 17.86648716236631204309483531110, 18.924055770431924988909492549204, 21.0958913237535286996821140067, 21.54588568541872962272474609959, 22.510506411295029000170482782884, 23.42556525777692757799304970331, 24.108451744570359839141313886838, 25.61795311758925163699546443217, 26.39392496602285169255548171621, 27.221225329299839092866179294211, 28.791049900298096151263146058586, 29.541148792128097610381720385191