Properties

Label 1-119-119.6-r0-0-0
Degree 11
Conductor 119119
Sign 0.837+0.547i-0.837 + 0.547i
Analytic cond. 0.5526330.552633
Root an. cond. 0.5526330.552633
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + (−0.923 + 0.382i)3-s + i·4-s + (0.382 + 0.923i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.382 + 0.923i)10-s + (−0.923 − 0.382i)11-s + (−0.382 − 0.923i)12-s + i·13-s + (−0.707 − 0.707i)15-s − 16-s + 18-s + (−0.707 − 0.707i)19-s + (−0.923 + 0.382i)20-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)2-s + (−0.923 + 0.382i)3-s + i·4-s + (0.382 + 0.923i)5-s + (−0.923 − 0.382i)6-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.382 + 0.923i)10-s + (−0.923 − 0.382i)11-s + (−0.382 − 0.923i)12-s + i·13-s + (−0.707 − 0.707i)15-s − 16-s + 18-s + (−0.707 − 0.707i)19-s + (−0.923 + 0.382i)20-s + ⋯

Functional equation

Λ(s)=(119s/2ΓR(s)L(s)=((0.837+0.547i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.837 + 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(119s/2ΓR(s)L(s)=((0.837+0.547i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.837 + 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 119119    =    7177 \cdot 17
Sign: 0.837+0.547i-0.837 + 0.547i
Analytic conductor: 0.5526330.552633
Root analytic conductor: 0.5526330.552633
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ119(6,)\chi_{119} (6, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 119, (0: ), 0.837+0.547i)(1,\ 119,\ (0:\ ),\ -0.837 + 0.547i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.3051174217+1.024455680i0.3051174217 + 1.024455680i
L(12)L(\frac12) \approx 0.3051174217+1.024455680i0.3051174217 + 1.024455680i
L(1)L(1) \approx 0.7696574886+0.7856176571i0.7696574886 + 0.7856176571i
L(1)L(1) \approx 0.7696574886+0.7856176571i0.7696574886 + 0.7856176571i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
17 1 1
good2 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
3 1+(0.923+0.382i)T 1 + (-0.923 + 0.382i)T
5 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
11 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
13 1+iT 1 + iT
19 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
23 1+(0.923+0.382i)T 1 + (0.923 + 0.382i)T
29 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
31 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
37 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
41 1+(0.3820.923i)T 1 + (0.382 - 0.923i)T
43 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
47 1+iT 1 + iT
53 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
59 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
61 1+(0.382+0.923i)T 1 + (-0.382 + 0.923i)T
67 1T 1 - T
71 1+(0.9230.382i)T 1 + (0.923 - 0.382i)T
73 1+(0.382+0.923i)T 1 + (0.382 + 0.923i)T
79 1+(0.9230.382i)T 1 + (-0.923 - 0.382i)T
83 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
89 1iT 1 - iT
97 1+(0.3820.923i)T 1 + (-0.382 - 0.923i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−28.79070472558517166282218748921, −28.17389707179300093345074642076, −27.213036997454679282010474818889, −25.17339117449492446344633289800, −24.47603604057743674868557671008, −23.31720473672543548342433352806, −22.837610483617573696785639800041, −21.44281856868729394940114383641, −20.821321678635067728863531651683, −19.60799540699056778020619013803, −18.4045168506845615608586417952, −17.459277861528155450055261375385, −16.22254030658435231997424240109, −15.08511929331746285229238364334, −13.378010136822308845406248022362, −12.855125191271579429324484962544, −11.99099827843419773070615786398, −10.672261055483333086470689326522, −9.86756509188240645822975513780, −8.0750664319442218718092730087, −6.30869555046806777906701195417, −5.32859378311603003478821801512, −4.484942650508736821385135526000, −2.435695877007640825270315520288, −0.94226626654568488407049412610, 2.710743645300153955966141937101, 4.21344285000112689542449543791, 5.42593378975691107593390805951, 6.43469033814034479184759804130, 7.31709464817159516905941144260, 9.103979924250952098831172687299, 10.64576823112022882195086097694, 11.4653915106826299222953840908, 12.80898724411866776705321553768, 13.89858471466087487461495842611, 15.066930211938604178167683393464, 15.910758678693970966186168870503, 17.00322562398669996567434020770, 17.86648716236631204309483531110, 18.924055770431924988909492549204, 21.0958913237535286996821140067, 21.54588568541872962272474609959, 22.510506411295029000170482782884, 23.42556525777692757799304970331, 24.108451744570359839141313886838, 25.61795311758925163699546443217, 26.39392496602285169255548171621, 27.221225329299839092866179294211, 28.791049900298096151263146058586, 29.541148792128097610381720385191

Graph of the ZZ-function along the critical line