L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 0.5i)5-s − i·6-s − 8-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)10-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)12-s − 13-s − 15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.5 − 0.866i)19-s + i·20-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 0.5i)5-s − i·6-s − 8-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)10-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)12-s − 13-s − 15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.5 − 0.866i)19-s + i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0125 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0125 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5390977936 - 0.5323690786i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5390977936 - 0.5323690786i\) |
\(L(1)\) |
\(\approx\) |
\(0.8629306776 + 0.08801127480i\) |
\(L(1)\) |
\(\approx\) |
\(0.8629306776 + 0.08801127480i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 - T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 - iT \) |
| 31 | \( 1 + (-0.866 - 0.5i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.866 + 0.5i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.866 - 0.5i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.32852352994478508488495955768, −28.395432685078672259708055910515, −27.3466360502849648224745261091, −26.41850552568678350619327914016, −24.95265826591282051386210702491, −23.546785475132513249653682015656, −22.8745041387734729371258481394, −21.78126201335404513713907990136, −21.33688898770155241765228061103, −20.20846423922868559994396445160, −18.69405189936084554088320464535, −17.92207008057654872851682699803, −16.877090952331693089361576451165, −15.27631632382868274758112749827, −14.45702832425211500549958789944, −13.04113253657651144860695166025, −12.20362320494196037454109524165, −10.830636977799984371001973453327, −10.2353344664844209892457594669, −9.29153904493803615677201539375, −6.94069414738572563205149576068, −5.596813378671643683519230813388, −4.85966682528575309462425404081, −3.23967777296623232279017196724, −1.767110132073562582086178043191,
0.28057690808344899328597376859, 2.45602213262898216197384625918, 4.71939496929002543361502803290, 5.45342054576510226874754801142, 6.51740646616702729867921458241, 7.64634473020185737666162001540, 8.99830498529230219534167364274, 10.49191355935487874278645651354, 12.01628456717477105330682762567, 13.032585872649971187933388903766, 13.613482898952261339168134476818, 15.09545750845779603388107673837, 16.377038719930329215943301038561, 17.11622709987852279658888128734, 17.85921202395113371960220841070, 19.00764587816758592605668593860, 20.88828175687849239172021163009, 21.7781430930872468270364280028, 22.59134321909181379376832423759, 23.85713350127712696468165499049, 24.33793587183253129717557589839, 25.293842913613816213676836341371, 26.39526874548868472598853288485, 27.60539008314541064986727693042, 28.84874511444154468782630494190