L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 0.5i)5-s − i·6-s − 8-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)10-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)12-s − 13-s − 15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.5 − 0.866i)19-s + i·20-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 0.5i)5-s − i·6-s − 8-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)10-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)12-s − 13-s − 15-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)18-s + (−0.5 − 0.866i)19-s + i·20-s + ⋯ |
Λ(s)=(=(119s/2ΓR(s+1)L(s)(0.0125−0.999i)Λ(1−s)
Λ(s)=(=(119s/2ΓR(s+1)L(s)(0.0125−0.999i)Λ(1−s)
Degree: |
1 |
Conductor: |
119
= 7⋅17
|
Sign: |
0.0125−0.999i
|
Analytic conductor: |
12.7883 |
Root analytic conductor: |
12.7883 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ119(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 119, (1: ), 0.0125−0.999i)
|
Particular Values
L(21) |
≈ |
0.5390977936−0.5323690786i |
L(21) |
≈ |
0.5390977936−0.5323690786i |
L(1) |
≈ |
0.8629306776+0.08801127480i |
L(1) |
≈ |
0.8629306776+0.08801127480i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 17 | 1 |
good | 2 | 1+(0.5+0.866i)T |
| 3 | 1+(−0.866−0.5i)T |
| 5 | 1+(0.866−0.5i)T |
| 11 | 1+(−0.866−0.5i)T |
| 13 | 1−T |
| 19 | 1+(−0.5−0.866i)T |
| 23 | 1+(0.866−0.5i)T |
| 29 | 1−iT |
| 31 | 1+(−0.866−0.5i)T |
| 37 | 1+(−0.866+0.5i)T |
| 41 | 1−iT |
| 43 | 1−T |
| 47 | 1+(0.5+0.866i)T |
| 53 | 1+(0.5−0.866i)T |
| 59 | 1+(−0.5+0.866i)T |
| 61 | 1+(−0.866+0.5i)T |
| 67 | 1+(−0.5+0.866i)T |
| 71 | 1−iT |
| 73 | 1+(−0.866−0.5i)T |
| 79 | 1+(0.866−0.5i)T |
| 83 | 1+T |
| 89 | 1+(0.5+0.866i)T |
| 97 | 1+iT |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−29.32852352994478508488495955768, −28.395432685078672259708055910515, −27.3466360502849648224745261091, −26.41850552568678350619327914016, −24.95265826591282051386210702491, −23.546785475132513249653682015656, −22.8745041387734729371258481394, −21.78126201335404513713907990136, −21.33688898770155241765228061103, −20.20846423922868559994396445160, −18.69405189936084554088320464535, −17.92207008057654872851682699803, −16.877090952331693089361576451165, −15.27631632382868274758112749827, −14.45702832425211500549958789944, −13.04113253657651144860695166025, −12.20362320494196037454109524165, −10.830636977799984371001973453327, −10.2353344664844209892457594669, −9.29153904493803615677201539375, −6.94069414738572563205149576068, −5.596813378671643683519230813388, −4.85966682528575309462425404081, −3.23967777296623232279017196724, −1.767110132073562582086178043191,
0.28057690808344899328597376859, 2.45602213262898216197384625918, 4.71939496929002543361502803290, 5.45342054576510226874754801142, 6.51740646616702729867921458241, 7.64634473020185737666162001540, 8.99830498529230219534167364274, 10.49191355935487874278645651354, 12.01628456717477105330682762567, 13.032585872649971187933388903766, 13.613482898952261339168134476818, 15.09545750845779603388107673837, 16.377038719930329215943301038561, 17.11622709987852279658888128734, 17.85921202395113371960220841070, 19.00764587816758592605668593860, 20.88828175687849239172021163009, 21.7781430930872468270364280028, 22.59134321909181379376832423759, 23.85713350127712696468165499049, 24.33793587183253129717557589839, 25.293842913613816213676836341371, 26.39526874548868472598853288485, 27.60539008314541064986727693042, 28.84874511444154468782630494190