L(s) = 1 | + (−0.707 + 0.707i)3-s + (0.891 − 0.453i)5-s + (0.587 − 0.809i)7-s − i·9-s + (0.453 − 0.891i)11-s + (−0.156 + 0.987i)13-s + (−0.309 + 0.951i)15-s + (−0.309 − 0.951i)17-s + (−0.987 + 0.156i)19-s + (0.156 + 0.987i)21-s + (0.587 + 0.809i)23-s + (0.587 − 0.809i)25-s + (0.707 + 0.707i)27-s + (0.453 + 0.891i)29-s + (0.309 + 0.951i)31-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s + (0.891 − 0.453i)5-s + (0.587 − 0.809i)7-s − i·9-s + (0.453 − 0.891i)11-s + (−0.156 + 0.987i)13-s + (−0.309 + 0.951i)15-s + (−0.309 − 0.951i)17-s + (−0.987 + 0.156i)19-s + (0.156 + 0.987i)21-s + (0.587 + 0.809i)23-s + (0.587 − 0.809i)25-s + (0.707 + 0.707i)27-s + (0.453 + 0.891i)29-s + (0.309 + 0.951i)31-s + ⋯ |
Λ(s)=(=(1312s/2ΓR(s)L(s)(0.882−0.471i)Λ(1−s)
Λ(s)=(=(1312s/2ΓR(s)L(s)(0.882−0.471i)Λ(1−s)
Degree: |
1 |
Conductor: |
1312
= 25⋅41
|
Sign: |
0.882−0.471i
|
Analytic conductor: |
6.09290 |
Root analytic conductor: |
6.09290 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1312(1125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1312, (0: ), 0.882−0.471i)
|
Particular Values
L(21) |
≈ |
1.505406151−0.3767562063i |
L(21) |
≈ |
1.505406151−0.3767562063i |
L(1) |
≈ |
1.096880103−0.04785512921i |
L(1) |
≈ |
1.096880103−0.04785512921i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 41 | 1 |
good | 3 | 1+(−0.707+0.707i)T |
| 5 | 1+(0.891−0.453i)T |
| 7 | 1+(0.587−0.809i)T |
| 11 | 1+(0.453−0.891i)T |
| 13 | 1+(−0.156+0.987i)T |
| 17 | 1+(−0.309−0.951i)T |
| 19 | 1+(−0.987+0.156i)T |
| 23 | 1+(0.587+0.809i)T |
| 29 | 1+(0.453+0.891i)T |
| 31 | 1+(0.309+0.951i)T |
| 37 | 1+(0.891−0.453i)T |
| 43 | 1+(0.987+0.156i)T |
| 47 | 1+(0.809−0.587i)T |
| 53 | 1+(−0.891+0.453i)T |
| 59 | 1+(−0.987−0.156i)T |
| 61 | 1+(0.987−0.156i)T |
| 67 | 1+(0.453+0.891i)T |
| 71 | 1+(−0.951+0.309i)T |
| 73 | 1−iT |
| 79 | 1−T |
| 83 | 1+(0.707−0.707i)T |
| 89 | 1+(0.587−0.809i)T |
| 97 | 1+(0.309−0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−21.150859720000194949890231817997, −20.308566096034690503985289236739, −19.174707157554040683941154623670, −18.708052395368081680050143074796, −17.726796095345152165950815580682, −17.46902585905335859855117788954, −16.888071004738610844975260607052, −15.439716156521282394932592532177, −14.92232591736614331267403050429, −14.144275196761020467147137495984, −12.958172628856404548342293117163, −12.73956158865567755385850814974, −11.76552496647584259448181380508, −10.88669333744889969109169415331, −10.32232667760317373660936289024, −9.31259818766578913029871484615, −8.300346259987605631558138326619, −7.55314246094647292596966354617, −6.365307565446484269170355333660, −6.145249017997810043020263073548, −5.127108049548574189591327084275, −4.33246055799056353610116227791, −2.53899607163820029357027206149, −2.19723791998184791584398885658, −1.10348913254888789507920593367,
0.78605015874928179201157607370, 1.67120533830544353469747155130, 3.07002681244401440779323110730, 4.24691503057133903156369345172, 4.739711588882063665951288164712, 5.6442494608153387216032493691, 6.46707662138184815334391435065, 7.22124672184406480677867065794, 8.701525492869662776932861720707, 9.132102523273626781183725197468, 10.03439828146032956247971922622, 10.85979004986756927725731293410, 11.37904437929482501288068094259, 12.28853380235842458668199767302, 13.29033067772182303481938627499, 14.1386651470461989492848420206, 14.52518107432540859394306585544, 15.87291869077254482659511467714, 16.43988588435984767258320414269, 17.119593335234790790036585897808, 17.53881117687767170533387356612, 18.425815077099932609531178904610, 19.47416485363443062681689898874, 20.39209167618956651886125351998, 21.07771835788394755074394065622