Properties

Label 1-1312-1312.1125-r0-0-0
Degree 11
Conductor 13121312
Sign 0.8820.471i0.882 - 0.471i
Analytic cond. 6.092906.09290
Root an. cond. 6.092906.09290
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)3-s + (0.891 − 0.453i)5-s + (0.587 − 0.809i)7-s i·9-s + (0.453 − 0.891i)11-s + (−0.156 + 0.987i)13-s + (−0.309 + 0.951i)15-s + (−0.309 − 0.951i)17-s + (−0.987 + 0.156i)19-s + (0.156 + 0.987i)21-s + (0.587 + 0.809i)23-s + (0.587 − 0.809i)25-s + (0.707 + 0.707i)27-s + (0.453 + 0.891i)29-s + (0.309 + 0.951i)31-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)3-s + (0.891 − 0.453i)5-s + (0.587 − 0.809i)7-s i·9-s + (0.453 − 0.891i)11-s + (−0.156 + 0.987i)13-s + (−0.309 + 0.951i)15-s + (−0.309 − 0.951i)17-s + (−0.987 + 0.156i)19-s + (0.156 + 0.987i)21-s + (0.587 + 0.809i)23-s + (0.587 − 0.809i)25-s + (0.707 + 0.707i)27-s + (0.453 + 0.891i)29-s + (0.309 + 0.951i)31-s + ⋯

Functional equation

Λ(s)=(1312s/2ΓR(s)L(s)=((0.8820.471i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1312 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.882 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1312s/2ΓR(s)L(s)=((0.8820.471i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1312 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.882 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 13121312    =    25412^{5} \cdot 41
Sign: 0.8820.471i0.882 - 0.471i
Analytic conductor: 6.092906.09290
Root analytic conductor: 6.092906.09290
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1312(1125,)\chi_{1312} (1125, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1312, (0: ), 0.8820.471i)(1,\ 1312,\ (0:\ ),\ 0.882 - 0.471i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.5054061510.3767562063i1.505406151 - 0.3767562063i
L(12)L(\frac12) \approx 1.5054061510.3767562063i1.505406151 - 0.3767562063i
L(1)L(1) \approx 1.0968801030.04785512921i1.096880103 - 0.04785512921i
L(1)L(1) \approx 1.0968801030.04785512921i1.096880103 - 0.04785512921i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
41 1 1
good3 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
5 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
7 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
11 1+(0.4530.891i)T 1 + (0.453 - 0.891i)T
13 1+(0.156+0.987i)T 1 + (-0.156 + 0.987i)T
17 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
19 1+(0.987+0.156i)T 1 + (-0.987 + 0.156i)T
23 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
29 1+(0.453+0.891i)T 1 + (0.453 + 0.891i)T
31 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
37 1+(0.8910.453i)T 1 + (0.891 - 0.453i)T
43 1+(0.987+0.156i)T 1 + (0.987 + 0.156i)T
47 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
53 1+(0.891+0.453i)T 1 + (-0.891 + 0.453i)T
59 1+(0.9870.156i)T 1 + (-0.987 - 0.156i)T
61 1+(0.9870.156i)T 1 + (0.987 - 0.156i)T
67 1+(0.453+0.891i)T 1 + (0.453 + 0.891i)T
71 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
73 1iT 1 - iT
79 1T 1 - T
83 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
89 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
97 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−21.150859720000194949890231817997, −20.308566096034690503985289236739, −19.174707157554040683941154623670, −18.708052395368081680050143074796, −17.726796095345152165950815580682, −17.46902585905335859855117788954, −16.888071004738610844975260607052, −15.439716156521282394932592532177, −14.92232591736614331267403050429, −14.144275196761020467147137495984, −12.958172628856404548342293117163, −12.73956158865567755385850814974, −11.76552496647584259448181380508, −10.88669333744889969109169415331, −10.32232667760317373660936289024, −9.31259818766578913029871484615, −8.300346259987605631558138326619, −7.55314246094647292596966354617, −6.365307565446484269170355333660, −6.145249017997810043020263073548, −5.127108049548574189591327084275, −4.33246055799056353610116227791, −2.53899607163820029357027206149, −2.19723791998184791584398885658, −1.10348913254888789507920593367, 0.78605015874928179201157607370, 1.67120533830544353469747155130, 3.07002681244401440779323110730, 4.24691503057133903156369345172, 4.739711588882063665951288164712, 5.6442494608153387216032493691, 6.46707662138184815334391435065, 7.22124672184406480677867065794, 8.701525492869662776932861720707, 9.132102523273626781183725197468, 10.03439828146032956247971922622, 10.85979004986756927725731293410, 11.37904437929482501288068094259, 12.28853380235842458668199767302, 13.29033067772182303481938627499, 14.1386651470461989492848420206, 14.52518107432540859394306585544, 15.87291869077254482659511467714, 16.43988588435984767258320414269, 17.119593335234790790036585897808, 17.53881117687767170533387356612, 18.425815077099932609531178904610, 19.47416485363443062681689898874, 20.39209167618956651886125351998, 21.07771835788394755074394065622

Graph of the ZZ-function along the critical line