L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.453 − 0.891i)5-s + (−0.587 + 0.809i)7-s + i·9-s + (−0.891 − 0.453i)11-s + (−0.987 − 0.156i)13-s + (−0.309 + 0.951i)15-s + (−0.309 − 0.951i)17-s + (−0.156 − 0.987i)19-s + (0.987 − 0.156i)21-s + (−0.587 − 0.809i)23-s + (−0.587 + 0.809i)25-s + (0.707 − 0.707i)27-s + (−0.891 + 0.453i)29-s + (0.309 + 0.951i)31-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.453 − 0.891i)5-s + (−0.587 + 0.809i)7-s + i·9-s + (−0.891 − 0.453i)11-s + (−0.987 − 0.156i)13-s + (−0.309 + 0.951i)15-s + (−0.309 − 0.951i)17-s + (−0.156 − 0.987i)19-s + (0.987 − 0.156i)21-s + (−0.587 − 0.809i)23-s + (−0.587 + 0.809i)25-s + (0.707 − 0.707i)27-s + (−0.891 + 0.453i)29-s + (0.309 + 0.951i)31-s + ⋯ |
Λ(s)=(=(1312s/2ΓR(s)L(s)(0.772+0.634i)Λ(1−s)
Λ(s)=(=(1312s/2ΓR(s)L(s)(0.772+0.634i)Λ(1−s)
Degree: |
1 |
Conductor: |
1312
= 25⋅41
|
Sign: |
0.772+0.634i
|
Analytic conductor: |
6.09290 |
Root analytic conductor: |
6.09290 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1312(141,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1312, (0: ), 0.772+0.634i)
|
Particular Values
L(21) |
≈ |
0.2146470902+0.07685166479i |
L(21) |
≈ |
0.2146470902+0.07685166479i |
L(1) |
≈ |
0.4989837572−0.1819965802i |
L(1) |
≈ |
0.4989837572−0.1819965802i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 41 | 1 |
good | 3 | 1+(−0.707−0.707i)T |
| 5 | 1+(−0.453−0.891i)T |
| 7 | 1+(−0.587+0.809i)T |
| 11 | 1+(−0.891−0.453i)T |
| 13 | 1+(−0.987−0.156i)T |
| 17 | 1+(−0.309−0.951i)T |
| 19 | 1+(−0.156−0.987i)T |
| 23 | 1+(−0.587−0.809i)T |
| 29 | 1+(−0.891+0.453i)T |
| 31 | 1+(0.309+0.951i)T |
| 37 | 1+(−0.453−0.891i)T |
| 43 | 1+(0.156−0.987i)T |
| 47 | 1+(0.809−0.587i)T |
| 53 | 1+(0.453+0.891i)T |
| 59 | 1+(−0.156+0.987i)T |
| 61 | 1+(0.156+0.987i)T |
| 67 | 1+(−0.891+0.453i)T |
| 71 | 1+(0.951−0.309i)T |
| 73 | 1+iT |
| 79 | 1−T |
| 83 | 1+(0.707+0.707i)T |
| 89 | 1+(−0.587+0.809i)T |
| 97 | 1+(0.309−0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.90811165585777995691699236766, −20.17856793225610041230269282292, −19.31000925986905995609466049798, −18.6423112432577997143128229275, −17.63571727350324296272233165291, −17.09784261530932114749603340141, −16.29985995764698604262070095642, −15.46403236960190285519908194695, −14.99474679920181729326448522420, −14.13052772833812627711317160459, −13.04791293613089296252270671417, −12.28056448906004834692684650433, −11.41740559660518526385796275992, −10.66857869290661369850282314122, −10.0119338744743068827429081288, −9.6308767939628147263265168324, −8.01616071848893038668715049611, −7.41202974368085955390132445955, −6.47554920066436968472345677358, −5.80355126164614170800574421714, −4.62403721311329004579927015662, −3.923997277182725325643071614142, −3.191366486513877945194135045162, −1.964751628062722108095425531764, −0.14893843458435880532725223645,
0.68015206138858719359590062456, 2.183685851036947863258735499034, 2.83139449761118354133408659031, 4.34532289777646478921686563993, 5.301504280352666543282740756432, 5.58851930623385207989802108696, 6.899759207133844348353228973004, 7.45270321136233246889044247492, 8.51939060071453070367798902221, 9.08684641952328856880796523689, 10.235675800381705761148341021687, 11.105012328224992357183040073944, 12.076380564755421761681147510652, 12.370172310005923092553605141511, 13.157009830139357465013163192, 13.828277739418395364397777199676, 15.16930765274702730142484963895, 15.92063946925295276511552665058, 16.3947581482232998318767939626, 17.230439403747362227984352343364, 18.1024462342046222961617404504, 18.683003363958245143021767701330, 19.52359828648502667572099053725, 20.0409980078837450260866123716, 21.114371113269004655646951731846