Properties

Label 1-1312-1312.141-r0-0-0
Degree 11
Conductor 13121312
Sign 0.772+0.634i0.772 + 0.634i
Analytic cond. 6.092906.09290
Root an. cond. 6.092906.09290
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)3-s + (−0.453 − 0.891i)5-s + (−0.587 + 0.809i)7-s + i·9-s + (−0.891 − 0.453i)11-s + (−0.987 − 0.156i)13-s + (−0.309 + 0.951i)15-s + (−0.309 − 0.951i)17-s + (−0.156 − 0.987i)19-s + (0.987 − 0.156i)21-s + (−0.587 − 0.809i)23-s + (−0.587 + 0.809i)25-s + (0.707 − 0.707i)27-s + (−0.891 + 0.453i)29-s + (0.309 + 0.951i)31-s + ⋯
L(s)  = 1  + (−0.707 − 0.707i)3-s + (−0.453 − 0.891i)5-s + (−0.587 + 0.809i)7-s + i·9-s + (−0.891 − 0.453i)11-s + (−0.987 − 0.156i)13-s + (−0.309 + 0.951i)15-s + (−0.309 − 0.951i)17-s + (−0.156 − 0.987i)19-s + (0.987 − 0.156i)21-s + (−0.587 − 0.809i)23-s + (−0.587 + 0.809i)25-s + (0.707 − 0.707i)27-s + (−0.891 + 0.453i)29-s + (0.309 + 0.951i)31-s + ⋯

Functional equation

Λ(s)=(1312s/2ΓR(s)L(s)=((0.772+0.634i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1312 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.772 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1312s/2ΓR(s)L(s)=((0.772+0.634i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1312 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.772 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 13121312    =    25412^{5} \cdot 41
Sign: 0.772+0.634i0.772 + 0.634i
Analytic conductor: 6.092906.09290
Root analytic conductor: 6.092906.09290
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1312(141,)\chi_{1312} (141, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1312, (0: ), 0.772+0.634i)(1,\ 1312,\ (0:\ ),\ 0.772 + 0.634i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.2146470902+0.07685166479i0.2146470902 + 0.07685166479i
L(12)L(\frac12) \approx 0.2146470902+0.07685166479i0.2146470902 + 0.07685166479i
L(1)L(1) \approx 0.49898375720.1819965802i0.4989837572 - 0.1819965802i
L(1)L(1) \approx 0.49898375720.1819965802i0.4989837572 - 0.1819965802i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
41 1 1
good3 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
5 1+(0.4530.891i)T 1 + (-0.453 - 0.891i)T
7 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
11 1+(0.8910.453i)T 1 + (-0.891 - 0.453i)T
13 1+(0.9870.156i)T 1 + (-0.987 - 0.156i)T
17 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
19 1+(0.1560.987i)T 1 + (-0.156 - 0.987i)T
23 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
29 1+(0.891+0.453i)T 1 + (-0.891 + 0.453i)T
31 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
37 1+(0.4530.891i)T 1 + (-0.453 - 0.891i)T
43 1+(0.1560.987i)T 1 + (0.156 - 0.987i)T
47 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
53 1+(0.453+0.891i)T 1 + (0.453 + 0.891i)T
59 1+(0.156+0.987i)T 1 + (-0.156 + 0.987i)T
61 1+(0.156+0.987i)T 1 + (0.156 + 0.987i)T
67 1+(0.891+0.453i)T 1 + (-0.891 + 0.453i)T
71 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
73 1+iT 1 + iT
79 1T 1 - T
83 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
89 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
97 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.90811165585777995691699236766, −20.17856793225610041230269282292, −19.31000925986905995609466049798, −18.6423112432577997143128229275, −17.63571727350324296272233165291, −17.09784261530932114749603340141, −16.29985995764698604262070095642, −15.46403236960190285519908194695, −14.99474679920181729326448522420, −14.13052772833812627711317160459, −13.04791293613089296252270671417, −12.28056448906004834692684650433, −11.41740559660518526385796275992, −10.66857869290661369850282314122, −10.0119338744743068827429081288, −9.6308767939628147263265168324, −8.01616071848893038668715049611, −7.41202974368085955390132445955, −6.47554920066436968472345677358, −5.80355126164614170800574421714, −4.62403721311329004579927015662, −3.923997277182725325643071614142, −3.191366486513877945194135045162, −1.964751628062722108095425531764, −0.14893843458435880532725223645, 0.68015206138858719359590062456, 2.183685851036947863258735499034, 2.83139449761118354133408659031, 4.34532289777646478921686563993, 5.301504280352666543282740756432, 5.58851930623385207989802108696, 6.899759207133844348353228973004, 7.45270321136233246889044247492, 8.51939060071453070367798902221, 9.08684641952328856880796523689, 10.235675800381705761148341021687, 11.105012328224992357183040073944, 12.076380564755421761681147510652, 12.370172310005923092553605141511, 13.157009830139357465013163192, 13.828277739418395364397777199676, 15.16930765274702730142484963895, 15.92063946925295276511552665058, 16.3947581482232998318767939626, 17.230439403747362227984352343364, 18.1024462342046222961617404504, 18.683003363958245143021767701330, 19.52359828648502667572099053725, 20.0409980078837450260866123716, 21.114371113269004655646951731846

Graph of the ZZ-function along the critical line