L(s) = 1 | + 3-s + (0.891 + 0.453i)5-s + (0.156 − 0.987i)7-s + 9-s + (−0.951 − 0.309i)11-s + (−0.809 − 0.587i)13-s + (0.891 + 0.453i)15-s + (−0.453 − 0.891i)17-s + (−0.587 − 0.809i)19-s + (0.156 − 0.987i)21-s + (−0.587 + 0.809i)23-s + (0.587 + 0.809i)25-s + 27-s + (−0.309 − 0.951i)29-s + (0.309 − 0.951i)31-s + ⋯ |
L(s) = 1 | + 3-s + (0.891 + 0.453i)5-s + (0.156 − 0.987i)7-s + 9-s + (−0.951 − 0.309i)11-s + (−0.809 − 0.587i)13-s + (0.891 + 0.453i)15-s + (−0.453 − 0.891i)17-s + (−0.587 − 0.809i)19-s + (0.156 − 0.987i)21-s + (−0.587 + 0.809i)23-s + (0.587 + 0.809i)25-s + 27-s + (−0.309 − 0.951i)29-s + (0.309 − 0.951i)31-s + ⋯ |
Λ(s)=(=(1312s/2ΓR(s)L(s)(0.361−0.932i)Λ(1−s)
Λ(s)=(=(1312s/2ΓR(s)L(s)(0.361−0.932i)Λ(1−s)
Degree: |
1 |
Conductor: |
1312
= 25⋅41
|
Sign: |
0.361−0.932i
|
Analytic conductor: |
6.09290 |
Root analytic conductor: |
6.09290 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1312(171,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1312, (0: ), 0.361−0.932i)
|
Particular Values
L(21) |
≈ |
1.886474873−1.291676128i |
L(21) |
≈ |
1.886474873−1.291676128i |
L(1) |
≈ |
1.527844760−0.3333951322i |
L(1) |
≈ |
1.527844760−0.3333951322i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 41 | 1 |
good | 3 | 1+T |
| 5 | 1+(0.891+0.453i)T |
| 7 | 1+(0.156−0.987i)T |
| 11 | 1+(−0.951−0.309i)T |
| 13 | 1+(−0.809−0.587i)T |
| 17 | 1+(−0.453−0.891i)T |
| 19 | 1+(−0.587−0.809i)T |
| 23 | 1+(−0.587+0.809i)T |
| 29 | 1+(−0.309−0.951i)T |
| 31 | 1+(0.309−0.951i)T |
| 37 | 1+(0.453−0.891i)T |
| 43 | 1+(0.987−0.156i)T |
| 47 | 1+(0.987−0.156i)T |
| 53 | 1+(−0.951+0.309i)T |
| 59 | 1+(−0.156−0.987i)T |
| 61 | 1+(0.987+0.156i)T |
| 67 | 1+(0.951−0.309i)T |
| 71 | 1+(0.453+0.891i)T |
| 73 | 1−T |
| 79 | 1+(0.707+0.707i)T |
| 83 | 1+(0.707−0.707i)T |
| 89 | 1+(−0.156+0.987i)T |
| 97 | 1+(0.891+0.453i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.996345667090439092333126032418, −20.54692638217607254249810308550, −19.58697258526520986155790252160, −18.811272948641442325875243299084, −18.20454730233085541171164476000, −17.42130095219797103065505554035, −16.41813295579672452102398532658, −15.692228932197565776454636667997, −14.75292927683139258304840049081, −14.38308322253738148217408628946, −13.40147135166566202457326673142, −12.53280980227906057092301812073, −12.34663990950569207319122876757, −10.70674608850217559419652599879, −10.04563187344839609404664463023, −9.27031457855565514276063281442, −8.55999104556435455515880643233, −8.001822393703819445829646149201, −6.82076277781056383997941114852, −5.945150427732765256496401654785, −4.96866766617147874650354780949, −4.26861581326580225362713298095, −2.87484658468462179902694910475, −2.19051379217544375037466381640, −1.62001305155800710938727119345,
0.716232170361144588862355146716, 2.2711931453758283720808545151, 2.5310545036638508764630441037, 3.68561718584787213723779400906, 4.63530139961648051121791310251, 5.572243024892648052842192002716, 6.71981827474278597978178931601, 7.51229608260888147654775354616, 7.995033669529650433624299629730, 9.2873668353359166502063294395, 9.76738263988252841173456853786, 10.555289413526637737172476443380, 11.23674143824928324752617000688, 12.70484238602154926221159485837, 13.39147484148199957943164757087, 13.77824401766272487505851483041, 14.55492655008970451865150472680, 15.36803076493941925522123087852, 16.05630575324735009339202219288, 17.32080377010173102106362005403, 17.65060531068783472489861933189, 18.65031943890000727490136712417, 19.29910141251152434039989572137, 20.25543056961230318472285326456, 20.64136401717215714300416612291