Properties

Label 1-1312-1312.171-r0-0-0
Degree 11
Conductor 13121312
Sign 0.3610.932i0.361 - 0.932i
Analytic cond. 6.092906.09290
Root an. cond. 6.092906.09290
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + (0.891 + 0.453i)5-s + (0.156 − 0.987i)7-s + 9-s + (−0.951 − 0.309i)11-s + (−0.809 − 0.587i)13-s + (0.891 + 0.453i)15-s + (−0.453 − 0.891i)17-s + (−0.587 − 0.809i)19-s + (0.156 − 0.987i)21-s + (−0.587 + 0.809i)23-s + (0.587 + 0.809i)25-s + 27-s + (−0.309 − 0.951i)29-s + (0.309 − 0.951i)31-s + ⋯
L(s)  = 1  + 3-s + (0.891 + 0.453i)5-s + (0.156 − 0.987i)7-s + 9-s + (−0.951 − 0.309i)11-s + (−0.809 − 0.587i)13-s + (0.891 + 0.453i)15-s + (−0.453 − 0.891i)17-s + (−0.587 − 0.809i)19-s + (0.156 − 0.987i)21-s + (−0.587 + 0.809i)23-s + (0.587 + 0.809i)25-s + 27-s + (−0.309 − 0.951i)29-s + (0.309 − 0.951i)31-s + ⋯

Functional equation

Λ(s)=(1312s/2ΓR(s)L(s)=((0.3610.932i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1312 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.361 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1312s/2ΓR(s)L(s)=((0.3610.932i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1312 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.361 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 13121312    =    25412^{5} \cdot 41
Sign: 0.3610.932i0.361 - 0.932i
Analytic conductor: 6.092906.09290
Root analytic conductor: 6.092906.09290
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1312(171,)\chi_{1312} (171, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1312, (0: ), 0.3610.932i)(1,\ 1312,\ (0:\ ),\ 0.361 - 0.932i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.8864748731.291676128i1.886474873 - 1.291676128i
L(12)L(\frac12) \approx 1.8864748731.291676128i1.886474873 - 1.291676128i
L(1)L(1) \approx 1.5278447600.3333951322i1.527844760 - 0.3333951322i
L(1)L(1) \approx 1.5278447600.3333951322i1.527844760 - 0.3333951322i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
41 1 1
good3 1+T 1 + T
5 1+(0.891+0.453i)T 1 + (0.891 + 0.453i)T
7 1+(0.1560.987i)T 1 + (0.156 - 0.987i)T
11 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
13 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
17 1+(0.4530.891i)T 1 + (-0.453 - 0.891i)T
19 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
23 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
29 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
31 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
37 1+(0.4530.891i)T 1 + (0.453 - 0.891i)T
43 1+(0.9870.156i)T 1 + (0.987 - 0.156i)T
47 1+(0.9870.156i)T 1 + (0.987 - 0.156i)T
53 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
59 1+(0.1560.987i)T 1 + (-0.156 - 0.987i)T
61 1+(0.987+0.156i)T 1 + (0.987 + 0.156i)T
67 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
71 1+(0.453+0.891i)T 1 + (0.453 + 0.891i)T
73 1T 1 - T
79 1+(0.707+0.707i)T 1 + (0.707 + 0.707i)T
83 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
89 1+(0.156+0.987i)T 1 + (-0.156 + 0.987i)T
97 1+(0.891+0.453i)T 1 + (0.891 + 0.453i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.996345667090439092333126032418, −20.54692638217607254249810308550, −19.58697258526520986155790252160, −18.811272948641442325875243299084, −18.20454730233085541171164476000, −17.42130095219797103065505554035, −16.41813295579672452102398532658, −15.692228932197565776454636667997, −14.75292927683139258304840049081, −14.38308322253738148217408628946, −13.40147135166566202457326673142, −12.53280980227906057092301812073, −12.34663990950569207319122876757, −10.70674608850217559419652599879, −10.04563187344839609404664463023, −9.27031457855565514276063281442, −8.55999104556435455515880643233, −8.001822393703819445829646149201, −6.82076277781056383997941114852, −5.945150427732765256496401654785, −4.96866766617147874650354780949, −4.26861581326580225362713298095, −2.87484658468462179902694910475, −2.19051379217544375037466381640, −1.62001305155800710938727119345, 0.716232170361144588862355146716, 2.2711931453758283720808545151, 2.5310545036638508764630441037, 3.68561718584787213723779400906, 4.63530139961648051121791310251, 5.572243024892648052842192002716, 6.71981827474278597978178931601, 7.51229608260888147654775354616, 7.995033669529650433624299629730, 9.2873668353359166502063294395, 9.76738263988252841173456853786, 10.555289413526637737172476443380, 11.23674143824928324752617000688, 12.70484238602154926221159485837, 13.39147484148199957943164757087, 13.77824401766272487505851483041, 14.55492655008970451865150472680, 15.36803076493941925522123087852, 16.05630575324735009339202219288, 17.32080377010173102106362005403, 17.65060531068783472489861933189, 18.65031943890000727490136712417, 19.29910141251152434039989572137, 20.25543056961230318472285326456, 20.64136401717215714300416612291

Graph of the ZZ-function along the critical line