Properties

Label 1-13e2-169.105-r0-0-0
Degree 11
Conductor 169169
Sign 0.9860.166i-0.986 - 0.166i
Analytic cond. 0.7848320.784832
Root an. cond. 0.7848320.784832
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.970 − 0.239i)2-s + (0.120 − 0.992i)3-s + (0.885 + 0.464i)4-s + (0.568 − 0.822i)5-s + (−0.354 + 0.935i)6-s + (−0.748 − 0.663i)7-s + (−0.748 − 0.663i)8-s + (−0.970 − 0.239i)9-s + (−0.748 + 0.663i)10-s + (−0.970 + 0.239i)11-s + (0.568 − 0.822i)12-s + (0.568 + 0.822i)14-s + (−0.748 − 0.663i)15-s + (0.568 + 0.822i)16-s + (−0.748 − 0.663i)17-s + (0.885 + 0.464i)18-s + ⋯
L(s)  = 1  + (−0.970 − 0.239i)2-s + (0.120 − 0.992i)3-s + (0.885 + 0.464i)4-s + (0.568 − 0.822i)5-s + (−0.354 + 0.935i)6-s + (−0.748 − 0.663i)7-s + (−0.748 − 0.663i)8-s + (−0.970 − 0.239i)9-s + (−0.748 + 0.663i)10-s + (−0.970 + 0.239i)11-s + (0.568 − 0.822i)12-s + (0.568 + 0.822i)14-s + (−0.748 − 0.663i)15-s + (0.568 + 0.822i)16-s + (−0.748 − 0.663i)17-s + (0.885 + 0.464i)18-s + ⋯

Functional equation

Λ(s)=(169s/2ΓR(s)L(s)=((0.9860.166i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.986 - 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(169s/2ΓR(s)L(s)=((0.9860.166i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.986 - 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 169169    =    13213^{2}
Sign: 0.9860.166i-0.986 - 0.166i
Analytic conductor: 0.7848320.784832
Root analytic conductor: 0.7848320.784832
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ169(105,)\chi_{169} (105, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 169, (0: ), 0.9860.166i)(1,\ 169,\ (0:\ ),\ -0.986 - 0.166i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.046845937830.5587037508i0.04684593783 - 0.5587037508i
L(12)L(\frac12) \approx 0.046845937830.5587037508i0.04684593783 - 0.5587037508i
L(1)L(1) \approx 0.47023481600.4270755752i0.4702348160 - 0.4270755752i
L(1)L(1) \approx 0.47023481600.4270755752i0.4702348160 - 0.4270755752i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad13 1 1
good2 1+(0.9700.239i)T 1 + (-0.970 - 0.239i)T
3 1+(0.1200.992i)T 1 + (0.120 - 0.992i)T
5 1+(0.5680.822i)T 1 + (0.568 - 0.822i)T
7 1+(0.7480.663i)T 1 + (-0.748 - 0.663i)T
11 1+(0.970+0.239i)T 1 + (-0.970 + 0.239i)T
17 1+(0.7480.663i)T 1 + (-0.748 - 0.663i)T
19 1+T 1 + T
23 1+T 1 + T
29 1+(0.9700.239i)T 1 + (-0.970 - 0.239i)T
31 1+(0.354+0.935i)T 1 + (-0.354 + 0.935i)T
37 1+(0.354+0.935i)T 1 + (-0.354 + 0.935i)T
41 1+(0.1200.992i)T 1 + (0.120 - 0.992i)T
43 1+(0.3540.935i)T 1 + (-0.354 - 0.935i)T
47 1+(0.8850.464i)T 1 + (0.885 - 0.464i)T
53 1+(0.7480.663i)T 1 + (-0.748 - 0.663i)T
59 1+(0.5680.822i)T 1 + (0.568 - 0.822i)T
61 1+(0.748+0.663i)T 1 + (-0.748 + 0.663i)T
67 1+(0.8850.464i)T 1 + (0.885 - 0.464i)T
71 1+(0.1200.992i)T 1 + (0.120 - 0.992i)T
73 1+(0.970+0.239i)T 1 + (-0.970 + 0.239i)T
79 1+(0.8850.464i)T 1 + (0.885 - 0.464i)T
83 1+(0.120+0.992i)T 1 + (0.120 + 0.992i)T
89 1+T 1 + T
97 1+(0.568+0.822i)T 1 + (0.568 + 0.822i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−28.064831859686738777672311711212, −26.69528861256239627619664795827, −26.32944174162826013340466900737, −25.57103669131064739253753074685, −24.600155009466140085740486900446, −23.07958709884468864107060847599, −22.05198913230482357796891779303, −21.247599330928753591492376899718, −20.19366846685784293807367325439, −19.06149575248825848228952861621, −18.28264049966145027969603095033, −17.21616344165260690503979146276, −16.12906899433927437376025177517, −15.385100331120555527668846407467, −14.606806788161078621222603722264, −13.14644359289650280898793749713, −11.3427789151020566877961680325, −10.62244025967653013410354913356, −9.64519269260633574298597106665, −8.97974611586246229658617917448, −7.58619488591752458821879481497, −6.19529016767813713632753856513, −5.39786486951356377877627403091, −3.2310370062479135462161270296, −2.36537918907374508224377269129, 0.58132552610903325239765974375, 1.93805835945170957887258274566, 3.169346791446382646398921753743, 5.35071787479851751212790773928, 6.75421823972400754009483827970, 7.52638027604034043047626865747, 8.75209945467928473478047677319, 9.60852069832059301455936691684, 10.80144980223519908247453958942, 12.11958108422110711028090110508, 13.02338356790365178018126372172, 13.70502625107856088364088230130, 15.59295542156338673939578179420, 16.61026595290830721937027171266, 17.44775377427845026446345512801, 18.27999948433194175918558108689, 19.22729334767563726451817800445, 20.3539521052020306210333396182, 20.61550623785930531763889561048, 22.27435093467006023378011877009, 23.59793809816640411096894653968, 24.47972269879286153652170319527, 25.33275030212830020826599769174, 26.04813607101260456766038604343, 27.02671245302098964995191895914

Graph of the ZZ-function along the critical line