L(s) = 1 | + (−0.970 − 0.239i)2-s + (0.120 − 0.992i)3-s + (0.885 + 0.464i)4-s + (0.568 − 0.822i)5-s + (−0.354 + 0.935i)6-s + (−0.748 − 0.663i)7-s + (−0.748 − 0.663i)8-s + (−0.970 − 0.239i)9-s + (−0.748 + 0.663i)10-s + (−0.970 + 0.239i)11-s + (0.568 − 0.822i)12-s + (0.568 + 0.822i)14-s + (−0.748 − 0.663i)15-s + (0.568 + 0.822i)16-s + (−0.748 − 0.663i)17-s + (0.885 + 0.464i)18-s + ⋯ |
L(s) = 1 | + (−0.970 − 0.239i)2-s + (0.120 − 0.992i)3-s + (0.885 + 0.464i)4-s + (0.568 − 0.822i)5-s + (−0.354 + 0.935i)6-s + (−0.748 − 0.663i)7-s + (−0.748 − 0.663i)8-s + (−0.970 − 0.239i)9-s + (−0.748 + 0.663i)10-s + (−0.970 + 0.239i)11-s + (0.568 − 0.822i)12-s + (0.568 + 0.822i)14-s + (−0.748 − 0.663i)15-s + (0.568 + 0.822i)16-s + (−0.748 − 0.663i)17-s + (0.885 + 0.464i)18-s + ⋯ |
Λ(s)=(=(169s/2ΓR(s)L(s)(−0.986−0.166i)Λ(1−s)
Λ(s)=(=(169s/2ΓR(s)L(s)(−0.986−0.166i)Λ(1−s)
Degree: |
1 |
Conductor: |
169
= 132
|
Sign: |
−0.986−0.166i
|
Analytic conductor: |
0.784832 |
Root analytic conductor: |
0.784832 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(105,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 169, (0: ), −0.986−0.166i)
|
Particular Values
L(21) |
≈ |
0.04684593783−0.5587037508i |
L(21) |
≈ |
0.04684593783−0.5587037508i |
L(1) |
≈ |
0.4702348160−0.4270755752i |
L(1) |
≈ |
0.4702348160−0.4270755752i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+(−0.970−0.239i)T |
| 3 | 1+(0.120−0.992i)T |
| 5 | 1+(0.568−0.822i)T |
| 7 | 1+(−0.748−0.663i)T |
| 11 | 1+(−0.970+0.239i)T |
| 17 | 1+(−0.748−0.663i)T |
| 19 | 1+T |
| 23 | 1+T |
| 29 | 1+(−0.970−0.239i)T |
| 31 | 1+(−0.354+0.935i)T |
| 37 | 1+(−0.354+0.935i)T |
| 41 | 1+(0.120−0.992i)T |
| 43 | 1+(−0.354−0.935i)T |
| 47 | 1+(0.885−0.464i)T |
| 53 | 1+(−0.748−0.663i)T |
| 59 | 1+(0.568−0.822i)T |
| 61 | 1+(−0.748+0.663i)T |
| 67 | 1+(0.885−0.464i)T |
| 71 | 1+(0.120−0.992i)T |
| 73 | 1+(−0.970+0.239i)T |
| 79 | 1+(0.885−0.464i)T |
| 83 | 1+(0.120+0.992i)T |
| 89 | 1+T |
| 97 | 1+(0.568+0.822i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−28.064831859686738777672311711212, −26.69528861256239627619664795827, −26.32944174162826013340466900737, −25.57103669131064739253753074685, −24.600155009466140085740486900446, −23.07958709884468864107060847599, −22.05198913230482357796891779303, −21.247599330928753591492376899718, −20.19366846685784293807367325439, −19.06149575248825848228952861621, −18.28264049966145027969603095033, −17.21616344165260690503979146276, −16.12906899433927437376025177517, −15.385100331120555527668846407467, −14.606806788161078621222603722264, −13.14644359289650280898793749713, −11.3427789151020566877961680325, −10.62244025967653013410354913356, −9.64519269260633574298597106665, −8.97974611586246229658617917448, −7.58619488591752458821879481497, −6.19529016767813713632753856513, −5.39786486951356377877627403091, −3.2310370062479135462161270296, −2.36537918907374508224377269129,
0.58132552610903325239765974375, 1.93805835945170957887258274566, 3.169346791446382646398921753743, 5.35071787479851751212790773928, 6.75421823972400754009483827970, 7.52638027604034043047626865747, 8.75209945467928473478047677319, 9.60852069832059301455936691684, 10.80144980223519908247453958942, 12.11958108422110711028090110508, 13.02338356790365178018126372172, 13.70502625107856088364088230130, 15.59295542156338673939578179420, 16.61026595290830721937027171266, 17.44775377427845026446345512801, 18.27999948433194175918558108689, 19.22729334767563726451817800445, 20.3539521052020306210333396182, 20.61550623785930531763889561048, 22.27435093467006023378011877009, 23.59793809816640411096894653968, 24.47972269879286153652170319527, 25.33275030212830020826599769174, 26.04813607101260456766038604343, 27.02671245302098964995191895914