Properties

Label 1-13e2-169.131-r0-0-0
Degree 11
Conductor 169169
Sign 0.6830.729i0.683 - 0.729i
Analytic cond. 0.7848320.784832
Root an. cond. 0.7848320.784832
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.885 − 0.464i)2-s + (−0.970 + 0.239i)3-s + (0.568 − 0.822i)4-s + (−0.354 + 0.935i)5-s + (−0.748 + 0.663i)6-s + (0.120 − 0.992i)7-s + (0.120 − 0.992i)8-s + (0.885 − 0.464i)9-s + (0.120 + 0.992i)10-s + (0.885 + 0.464i)11-s + (−0.354 + 0.935i)12-s + (−0.354 − 0.935i)14-s + (0.120 − 0.992i)15-s + (−0.354 − 0.935i)16-s + (0.120 − 0.992i)17-s + (0.568 − 0.822i)18-s + ⋯
L(s)  = 1  + (0.885 − 0.464i)2-s + (−0.970 + 0.239i)3-s + (0.568 − 0.822i)4-s + (−0.354 + 0.935i)5-s + (−0.748 + 0.663i)6-s + (0.120 − 0.992i)7-s + (0.120 − 0.992i)8-s + (0.885 − 0.464i)9-s + (0.120 + 0.992i)10-s + (0.885 + 0.464i)11-s + (−0.354 + 0.935i)12-s + (−0.354 − 0.935i)14-s + (0.120 − 0.992i)15-s + (−0.354 − 0.935i)16-s + (0.120 − 0.992i)17-s + (0.568 − 0.822i)18-s + ⋯

Functional equation

Λ(s)=(169s/2ΓR(s)L(s)=((0.6830.729i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.683 - 0.729i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(169s/2ΓR(s)L(s)=((0.6830.729i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.683 - 0.729i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 169169    =    13213^{2}
Sign: 0.6830.729i0.683 - 0.729i
Analytic conductor: 0.7848320.784832
Root analytic conductor: 0.7848320.784832
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ169(131,)\chi_{169} (131, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 169, (0: ), 0.6830.729i)(1,\ 169,\ (0:\ ),\ 0.683 - 0.729i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.2955980600.5615133831i1.295598060 - 0.5615133831i
L(12)L(\frac12) \approx 1.2955980600.5615133831i1.295598060 - 0.5615133831i
L(1)L(1) \approx 1.2681896240.3373617378i1.268189624 - 0.3373617378i
L(1)L(1) \approx 1.2681896240.3373617378i1.268189624 - 0.3373617378i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad13 1 1
good2 1+(0.8850.464i)T 1 + (0.885 - 0.464i)T
3 1+(0.970+0.239i)T 1 + (-0.970 + 0.239i)T
5 1+(0.354+0.935i)T 1 + (-0.354 + 0.935i)T
7 1+(0.1200.992i)T 1 + (0.120 - 0.992i)T
11 1+(0.885+0.464i)T 1 + (0.885 + 0.464i)T
17 1+(0.1200.992i)T 1 + (0.120 - 0.992i)T
19 1+T 1 + T
23 1+T 1 + T
29 1+(0.8850.464i)T 1 + (0.885 - 0.464i)T
31 1+(0.748+0.663i)T 1 + (-0.748 + 0.663i)T
37 1+(0.748+0.663i)T 1 + (-0.748 + 0.663i)T
41 1+(0.970+0.239i)T 1 + (-0.970 + 0.239i)T
43 1+(0.7480.663i)T 1 + (-0.748 - 0.663i)T
47 1+(0.568+0.822i)T 1 + (0.568 + 0.822i)T
53 1+(0.1200.992i)T 1 + (0.120 - 0.992i)T
59 1+(0.354+0.935i)T 1 + (-0.354 + 0.935i)T
61 1+(0.120+0.992i)T 1 + (0.120 + 0.992i)T
67 1+(0.568+0.822i)T 1 + (0.568 + 0.822i)T
71 1+(0.970+0.239i)T 1 + (-0.970 + 0.239i)T
73 1+(0.885+0.464i)T 1 + (0.885 + 0.464i)T
79 1+(0.568+0.822i)T 1 + (0.568 + 0.822i)T
83 1+(0.9700.239i)T 1 + (-0.970 - 0.239i)T
89 1+T 1 + T
97 1+(0.3540.935i)T 1 + (-0.354 - 0.935i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.88651261074955061704865888566, −26.86263565286334990856863233543, −25.18461138025577310361833083616, −24.62855251944673883983547288805, −23.89601262508483715314489663455, −22.99299133145382509472184287806, −21.92970965338582813703144467142, −21.41990688612430209258264368017, −20.080536978200867882666499338231, −18.85655905915013400593939334584, −17.487916193172931598425067505797, −16.725429154954688628364858878695, −15.910109046775552576485075367804, −14.97563873382243107654683936161, −13.55483579313420893643207395309, −12.471834705957748519709948289914, −11.988628592613521960092079828925, −11.05227199500354124199188513247, −9.096020311083055520288477304120, −8.00454428967281893202703812754, −6.66968574300465132629524808503, −5.62163805301369504840836504991, −4.917635047125664308733281570708, −3.596845655541757622639811907544, −1.60070110083289774435875825399, 1.206662595099503854441920780901, 3.190575916457331903307589581916, 4.20611890135551728995030399679, 5.246548712455300933791396628265, 6.79123755035835885647126819325, 7.10829868914295890136482949034, 9.72392738058294178653893188928, 10.514947090249089956835455494622, 11.466545234169376286686742061250, 12.04965118082563983880994410141, 13.52032984192250304775897807885, 14.42834651011740935809030168115, 15.45066181769036749282507417135, 16.452511428393249870979171665183, 17.65293264448484990097870355618, 18.73122203731236945824236301620, 19.8603968550645965826285770775, 20.78911066674607880172938691370, 21.97896420894474844619770758347, 22.71537289190267517327239171978, 23.17330606765561753117191155195, 24.138918772191026467433390370968, 25.3534472813370016912795997317, 27.0188845374965916161785357972, 27.31350296179807313186460152875

Graph of the ZZ-function along the critical line