L(s) = 1 | + (0.885 − 0.464i)2-s + (−0.970 + 0.239i)3-s + (0.568 − 0.822i)4-s + (−0.354 + 0.935i)5-s + (−0.748 + 0.663i)6-s + (0.120 − 0.992i)7-s + (0.120 − 0.992i)8-s + (0.885 − 0.464i)9-s + (0.120 + 0.992i)10-s + (0.885 + 0.464i)11-s + (−0.354 + 0.935i)12-s + (−0.354 − 0.935i)14-s + (0.120 − 0.992i)15-s + (−0.354 − 0.935i)16-s + (0.120 − 0.992i)17-s + (0.568 − 0.822i)18-s + ⋯ |
L(s) = 1 | + (0.885 − 0.464i)2-s + (−0.970 + 0.239i)3-s + (0.568 − 0.822i)4-s + (−0.354 + 0.935i)5-s + (−0.748 + 0.663i)6-s + (0.120 − 0.992i)7-s + (0.120 − 0.992i)8-s + (0.885 − 0.464i)9-s + (0.120 + 0.992i)10-s + (0.885 + 0.464i)11-s + (−0.354 + 0.935i)12-s + (−0.354 − 0.935i)14-s + (0.120 − 0.992i)15-s + (−0.354 − 0.935i)16-s + (0.120 − 0.992i)17-s + (0.568 − 0.822i)18-s + ⋯ |
Λ(s)=(=(169s/2ΓR(s)L(s)(0.683−0.729i)Λ(1−s)
Λ(s)=(=(169s/2ΓR(s)L(s)(0.683−0.729i)Λ(1−s)
Degree: |
1 |
Conductor: |
169
= 132
|
Sign: |
0.683−0.729i
|
Analytic conductor: |
0.784832 |
Root analytic conductor: |
0.784832 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 169, (0: ), 0.683−0.729i)
|
Particular Values
L(21) |
≈ |
1.295598060−0.5615133831i |
L(21) |
≈ |
1.295598060−0.5615133831i |
L(1) |
≈ |
1.268189624−0.3373617378i |
L(1) |
≈ |
1.268189624−0.3373617378i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+(0.885−0.464i)T |
| 3 | 1+(−0.970+0.239i)T |
| 5 | 1+(−0.354+0.935i)T |
| 7 | 1+(0.120−0.992i)T |
| 11 | 1+(0.885+0.464i)T |
| 17 | 1+(0.120−0.992i)T |
| 19 | 1+T |
| 23 | 1+T |
| 29 | 1+(0.885−0.464i)T |
| 31 | 1+(−0.748+0.663i)T |
| 37 | 1+(−0.748+0.663i)T |
| 41 | 1+(−0.970+0.239i)T |
| 43 | 1+(−0.748−0.663i)T |
| 47 | 1+(0.568+0.822i)T |
| 53 | 1+(0.120−0.992i)T |
| 59 | 1+(−0.354+0.935i)T |
| 61 | 1+(0.120+0.992i)T |
| 67 | 1+(0.568+0.822i)T |
| 71 | 1+(−0.970+0.239i)T |
| 73 | 1+(0.885+0.464i)T |
| 79 | 1+(0.568+0.822i)T |
| 83 | 1+(−0.970−0.239i)T |
| 89 | 1+T |
| 97 | 1+(−0.354−0.935i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.88651261074955061704865888566, −26.86263565286334990856863233543, −25.18461138025577310361833083616, −24.62855251944673883983547288805, −23.89601262508483715314489663455, −22.99299133145382509472184287806, −21.92970965338582813703144467142, −21.41990688612430209258264368017, −20.080536978200867882666499338231, −18.85655905915013400593939334584, −17.487916193172931598425067505797, −16.725429154954688628364858878695, −15.910109046775552576485075367804, −14.97563873382243107654683936161, −13.55483579313420893643207395309, −12.471834705957748519709948289914, −11.988628592613521960092079828925, −11.05227199500354124199188513247, −9.096020311083055520288477304120, −8.00454428967281893202703812754, −6.66968574300465132629524808503, −5.62163805301369504840836504991, −4.917635047125664308733281570708, −3.596845655541757622639811907544, −1.60070110083289774435875825399,
1.206662595099503854441920780901, 3.190575916457331903307589581916, 4.20611890135551728995030399679, 5.246548712455300933791396628265, 6.79123755035835885647126819325, 7.10829868914295890136482949034, 9.72392738058294178653893188928, 10.514947090249089956835455494622, 11.466545234169376286686742061250, 12.04965118082563983880994410141, 13.52032984192250304775897807885, 14.42834651011740935809030168115, 15.45066181769036749282507417135, 16.452511428393249870979171665183, 17.65293264448484990097870355618, 18.73122203731236945824236301620, 19.8603968550645965826285770775, 20.78911066674607880172938691370, 21.97896420894474844619770758347, 22.71537289190267517327239171978, 23.17330606765561753117191155195, 24.138918772191026467433390370968, 25.3534472813370016912795997317, 27.0188845374965916161785357972, 27.31350296179807313186460152875