L(s) = 1 | + (0.278 − 0.960i)2-s + (−0.919 − 0.391i)3-s + (−0.845 − 0.534i)4-s + (0.568 + 0.822i)5-s + (−0.632 + 0.774i)6-s + (0.948 + 0.316i)7-s + (−0.748 + 0.663i)8-s + (0.692 + 0.721i)9-s + (0.948 − 0.316i)10-s + (0.692 − 0.721i)11-s + (0.568 + 0.822i)12-s + (0.568 − 0.822i)14-s + (−0.200 − 0.979i)15-s + (0.428 + 0.903i)16-s + (0.948 + 0.316i)17-s + (0.885 − 0.464i)18-s + ⋯ |
L(s) = 1 | + (0.278 − 0.960i)2-s + (−0.919 − 0.391i)3-s + (−0.845 − 0.534i)4-s + (0.568 + 0.822i)5-s + (−0.632 + 0.774i)6-s + (0.948 + 0.316i)7-s + (−0.748 + 0.663i)8-s + (0.692 + 0.721i)9-s + (0.948 − 0.316i)10-s + (0.692 − 0.721i)11-s + (0.568 + 0.822i)12-s + (0.568 − 0.822i)14-s + (−0.200 − 0.979i)15-s + (0.428 + 0.903i)16-s + (0.948 + 0.316i)17-s + (0.885 − 0.464i)18-s + ⋯ |
Λ(s)=(=(169s/2ΓR(s)L(s)(0.348−0.937i)Λ(1−s)
Λ(s)=(=(169s/2ΓR(s)L(s)(0.348−0.937i)Λ(1−s)
Degree: |
1 |
Conductor: |
169
= 132
|
Sign: |
0.348−0.937i
|
Analytic conductor: |
0.784832 |
Root analytic conductor: |
0.784832 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 169, (0: ), 0.348−0.937i)
|
Particular Values
L(21) |
≈ |
0.9036120163−0.6278606489i |
L(21) |
≈ |
0.9036120163−0.6278606489i |
L(1) |
≈ |
0.9260666194−0.4756663992i |
L(1) |
≈ |
0.9260666194−0.4756663992i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+(0.278−0.960i)T |
| 3 | 1+(−0.919−0.391i)T |
| 5 | 1+(0.568+0.822i)T |
| 7 | 1+(0.948+0.316i)T |
| 11 | 1+(0.692−0.721i)T |
| 17 | 1+(0.948+0.316i)T |
| 19 | 1+(−0.5−0.866i)T |
| 23 | 1+(−0.5+0.866i)T |
| 29 | 1+(0.278−0.960i)T |
| 31 | 1+(−0.354−0.935i)T |
| 37 | 1+(0.987+0.160i)T |
| 41 | 1+(−0.919−0.391i)T |
| 43 | 1+(0.987−0.160i)T |
| 47 | 1+(0.885+0.464i)T |
| 53 | 1+(−0.748+0.663i)T |
| 59 | 1+(0.428−0.903i)T |
| 61 | 1+(−0.200+0.979i)T |
| 67 | 1+(−0.845+0.534i)T |
| 71 | 1+(0.799−0.600i)T |
| 73 | 1+(−0.970−0.239i)T |
| 79 | 1+(0.885+0.464i)T |
| 83 | 1+(0.120−0.992i)T |
| 89 | 1+(−0.5+0.866i)T |
| 97 | 1+(−0.996−0.0804i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.56162551868423572179391828650, −27.06583776861530456273527438694, −25.57294076620627848620343812343, −24.8148302461315259690613528424, −23.82825315501877620577436033713, −23.1895727931963276521599193364, −22.07231340769397871183923480089, −21.22730456259167297590008352671, −20.39644501977046014753171398487, −18.347606344902445644046077227445, −17.619474736170441695171584984622, −16.79599986322833587034360824334, −16.269793619802632029602468616055, −14.82772694716753874261844526852, −14.1199537783287653441197397770, −12.61185524248444187267263103732, −12.04257361950599756435714681280, −10.38462856943549264709248760993, −9.35777720732713539330966031206, −8.1727421088690030206616664876, −6.86490830212246932098292122558, −5.7262230896612307599207693511, −4.85457996656843720721912493882, −4.05718352803946889179164871183, −1.30501235460012084248814692268,
1.29952044805434409124111529482, 2.45512511296859713692982607522, 4.08950791307026141221918257888, 5.48891766041543261042940794935, 6.189066139432390467050403722158, 7.81632047368182663443388924783, 9.36854662723937592711439463766, 10.56102262403440258681297765496, 11.31726102645580594602497375815, 11.99482311274735564208905404938, 13.34555108191700156702393591710, 14.150594356872580636804545663240, 15.21108147260162837376279436310, 17.08781909855781872458015739394, 17.7075316273348977000566186940, 18.69082443866990150303330983420, 19.29572999011618132242948108162, 20.92225478107181512224095421361, 21.815119917150023327398335962856, 22.18883362987706038227147076643, 23.46005775224888621122151883150, 24.12089694465931707394957757125, 25.37240950424633755663435609776, 26.88577597571295505159150461971, 27.6469768324269734966025826145