L(s) = 1 | + (−0.406 + 0.913i)2-s + (0.669 − 0.743i)3-s + (−0.669 − 0.743i)4-s + (0.587 − 0.809i)5-s + (0.406 + 0.913i)6-s + (0.743 − 0.669i)7-s + (0.951 − 0.309i)8-s + (−0.104 − 0.994i)9-s + (0.5 + 0.866i)10-s − 12-s + (0.309 + 0.951i)14-s + (−0.207 − 0.978i)15-s + (−0.104 + 0.994i)16-s + (−0.913 + 0.406i)17-s + (0.951 + 0.309i)18-s + (0.207 − 0.978i)19-s + ⋯ |
L(s) = 1 | + (−0.406 + 0.913i)2-s + (0.669 − 0.743i)3-s + (−0.669 − 0.743i)4-s + (0.587 − 0.809i)5-s + (0.406 + 0.913i)6-s + (0.743 − 0.669i)7-s + (0.951 − 0.309i)8-s + (−0.104 − 0.994i)9-s + (0.5 + 0.866i)10-s − 12-s + (0.309 + 0.951i)14-s + (−0.207 − 0.978i)15-s + (−0.104 + 0.994i)16-s + (−0.913 + 0.406i)17-s + (0.951 + 0.309i)18-s + (0.207 − 0.978i)19-s + ⋯ |
Λ(s)=(=(143s/2ΓR(s+1)L(s)(0.289−0.957i)Λ(1−s)
Λ(s)=(=(143s/2ΓR(s+1)L(s)(0.289−0.957i)Λ(1−s)
Degree: |
1 |
Conductor: |
143
= 11⋅13
|
Sign: |
0.289−0.957i
|
Analytic conductor: |
15.3674 |
Root analytic conductor: |
15.3674 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ143(137,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 143, (1: ), 0.289−0.957i)
|
Particular Values
L(21) |
≈ |
1.489034510−1.104729436i |
L(21) |
≈ |
1.489034510−1.104729436i |
L(1) |
≈ |
1.173620899−0.2456673188i |
L(1) |
≈ |
1.173620899−0.2456673188i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 13 | 1 |
good | 2 | 1+(−0.406+0.913i)T |
| 3 | 1+(0.669−0.743i)T |
| 5 | 1+(0.587−0.809i)T |
| 7 | 1+(0.743−0.669i)T |
| 17 | 1+(−0.913+0.406i)T |
| 19 | 1+(0.207−0.978i)T |
| 23 | 1+(0.5+0.866i)T |
| 29 | 1+(−0.978+0.207i)T |
| 31 | 1+(−0.587−0.809i)T |
| 37 | 1+(0.207+0.978i)T |
| 41 | 1+(0.743+0.669i)T |
| 43 | 1+(0.5−0.866i)T |
| 47 | 1+(0.951−0.309i)T |
| 53 | 1+(−0.809+0.587i)T |
| 59 | 1+(0.743−0.669i)T |
| 61 | 1+(0.913−0.406i)T |
| 67 | 1+(0.866−0.5i)T |
| 71 | 1+(0.406+0.913i)T |
| 73 | 1+(−0.951−0.309i)T |
| 79 | 1+(−0.809+0.587i)T |
| 83 | 1+(0.587−0.809i)T |
| 89 | 1+(−0.866+0.5i)T |
| 97 | 1+(0.994−0.104i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−28.207081684834503290133017795287, −27.126239858329682414080513934080, −26.62787359110464049941131210193, −25.56194117979493559837814584550, −24.72302937198305687248611341284, −22.68747340823137910415704634053, −22.04680665777292596035209027687, −21.12093102097760898453559357181, −20.53511834170593621889332455181, −19.23258188518076373861842017771, −18.39501379714107060509592435923, −17.4957373156319082789910683493, −16.13878506220384324766002844870, −14.72487193783433901016421658302, −14.09811035334036084227680308517, −12.82052172000787654431146016818, −11.29388385342197252110940711154, −10.630249185421278319900492822281, −9.48912044936930932850712512494, −8.70057029142545193663043929914, −7.466379371687210581306178139024, −5.44065312227508532764078190010, −4.1002109482896685641984148300, −2.76770860743130764595770617898, −1.9399938416140803167806142451,
0.77677006441035665573504506812, 1.9042544415229415416365353689, 4.21157194159212596612792036257, 5.48513477291720974916444813923, 6.817295487955588273646006767409, 7.78687153521270370685617248139, 8.77913714541632613393761546687, 9.57885366883675462445643628215, 11.17571873634948670145534721984, 13.02458525778752509540778007563, 13.543482961689089755828022706666, 14.56201547734923097405938218968, 15.60956253287708138877851408871, 17.135368524263705687466042228838, 17.516215165156846003102158585921, 18.61322625663265377906519386085, 19.85654013633598205626167146678, 20.51776906766189015221427177460, 21.95079676465302667192245071113, 23.62263859998771767256948811910, 24.0618899337415540391464802183, 24.84662561356218945518482257077, 25.78876879430436636045722010142, 26.57413190380178907884967910472, 27.705702196727918967554860027895