Properties

Label 1-143-143.137-r1-0-0
Degree 11
Conductor 143143
Sign 0.2890.957i0.289 - 0.957i
Analytic cond. 15.367415.3674
Root an. cond. 15.367415.3674
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.406 + 0.913i)2-s + (0.669 − 0.743i)3-s + (−0.669 − 0.743i)4-s + (0.587 − 0.809i)5-s + (0.406 + 0.913i)6-s + (0.743 − 0.669i)7-s + (0.951 − 0.309i)8-s + (−0.104 − 0.994i)9-s + (0.5 + 0.866i)10-s − 12-s + (0.309 + 0.951i)14-s + (−0.207 − 0.978i)15-s + (−0.104 + 0.994i)16-s + (−0.913 + 0.406i)17-s + (0.951 + 0.309i)18-s + (0.207 − 0.978i)19-s + ⋯
L(s)  = 1  + (−0.406 + 0.913i)2-s + (0.669 − 0.743i)3-s + (−0.669 − 0.743i)4-s + (0.587 − 0.809i)5-s + (0.406 + 0.913i)6-s + (0.743 − 0.669i)7-s + (0.951 − 0.309i)8-s + (−0.104 − 0.994i)9-s + (0.5 + 0.866i)10-s − 12-s + (0.309 + 0.951i)14-s + (−0.207 − 0.978i)15-s + (−0.104 + 0.994i)16-s + (−0.913 + 0.406i)17-s + (0.951 + 0.309i)18-s + (0.207 − 0.978i)19-s + ⋯

Functional equation

Λ(s)=(143s/2ΓR(s+1)L(s)=((0.2890.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.289 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(143s/2ΓR(s+1)L(s)=((0.2890.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.289 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 143143    =    111311 \cdot 13
Sign: 0.2890.957i0.289 - 0.957i
Analytic conductor: 15.367415.3674
Root analytic conductor: 15.367415.3674
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ143(137,)\chi_{143} (137, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 143, (1: ), 0.2890.957i)(1,\ 143,\ (1:\ ),\ 0.289 - 0.957i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.4890345101.104729436i1.489034510 - 1.104729436i
L(12)L(\frac12) \approx 1.4890345101.104729436i1.489034510 - 1.104729436i
L(1)L(1) \approx 1.1736208990.2456673188i1.173620899 - 0.2456673188i
L(1)L(1) \approx 1.1736208990.2456673188i1.173620899 - 0.2456673188i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1 1
13 1 1
good2 1+(0.406+0.913i)T 1 + (-0.406 + 0.913i)T
3 1+(0.6690.743i)T 1 + (0.669 - 0.743i)T
5 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
7 1+(0.7430.669i)T 1 + (0.743 - 0.669i)T
17 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
19 1+(0.2070.978i)T 1 + (0.207 - 0.978i)T
23 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
29 1+(0.978+0.207i)T 1 + (-0.978 + 0.207i)T
31 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
37 1+(0.207+0.978i)T 1 + (0.207 + 0.978i)T
41 1+(0.743+0.669i)T 1 + (0.743 + 0.669i)T
43 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
47 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
53 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
59 1+(0.7430.669i)T 1 + (0.743 - 0.669i)T
61 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
67 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
71 1+(0.406+0.913i)T 1 + (0.406 + 0.913i)T
73 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
79 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
83 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
89 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
97 1+(0.9940.104i)T 1 + (0.994 - 0.104i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−28.207081684834503290133017795287, −27.126239858329682414080513934080, −26.62787359110464049941131210193, −25.56194117979493559837814584550, −24.72302937198305687248611341284, −22.68747340823137910415704634053, −22.04680665777292596035209027687, −21.12093102097760898453559357181, −20.53511834170593621889332455181, −19.23258188518076373861842017771, −18.39501379714107060509592435923, −17.4957373156319082789910683493, −16.13878506220384324766002844870, −14.72487193783433901016421658302, −14.09811035334036084227680308517, −12.82052172000787654431146016818, −11.29388385342197252110940711154, −10.630249185421278319900492822281, −9.48912044936930932850712512494, −8.70057029142545193663043929914, −7.466379371687210581306178139024, −5.44065312227508532764078190010, −4.1002109482896685641984148300, −2.76770860743130764595770617898, −1.9399938416140803167806142451, 0.77677006441035665573504506812, 1.9042544415229415416365353689, 4.21157194159212596612792036257, 5.48513477291720974916444813923, 6.817295487955588273646006767409, 7.78687153521270370685617248139, 8.77913714541632613393761546687, 9.57885366883675462445643628215, 11.17571873634948670145534721984, 13.02458525778752509540778007563, 13.543482961689089755828022706666, 14.56201547734923097405938218968, 15.60956253287708138877851408871, 17.135368524263705687466042228838, 17.516215165156846003102158585921, 18.61322625663265377906519386085, 19.85654013633598205626167146678, 20.51776906766189015221427177460, 21.95079676465302667192245071113, 23.62263859998771767256948811910, 24.0618899337415540391464802183, 24.84662561356218945518482257077, 25.78876879430436636045722010142, 26.57413190380178907884967910472, 27.705702196727918967554860027895

Graph of the ZZ-function along the critical line