L(s) = 1 | + (−0.104 − 0.994i)2-s + (−0.978 − 0.207i)3-s + (−0.978 + 0.207i)4-s + (−0.809 − 0.587i)5-s + (−0.104 + 0.994i)6-s + (−0.978 + 0.207i)7-s + (0.309 + 0.951i)8-s + (0.913 + 0.406i)9-s + (−0.5 + 0.866i)10-s + 12-s + (0.309 + 0.951i)14-s + (0.669 + 0.743i)15-s + (0.913 − 0.406i)16-s + (−0.104 + 0.994i)17-s + (0.309 − 0.951i)18-s + (0.669 − 0.743i)19-s + ⋯ |
L(s) = 1 | + (−0.104 − 0.994i)2-s + (−0.978 − 0.207i)3-s + (−0.978 + 0.207i)4-s + (−0.809 − 0.587i)5-s + (−0.104 + 0.994i)6-s + (−0.978 + 0.207i)7-s + (0.309 + 0.951i)8-s + (0.913 + 0.406i)9-s + (−0.5 + 0.866i)10-s + 12-s + (0.309 + 0.951i)14-s + (0.669 + 0.743i)15-s + (0.913 − 0.406i)16-s + (−0.104 + 0.994i)17-s + (0.309 − 0.951i)18-s + (0.669 − 0.743i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2587703625 + 0.07114493359i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2587703625 + 0.07114493359i\) |
\(L(1)\) |
\(\approx\) |
\(0.4279717183 - 0.1782032251i\) |
\(L(1)\) |
\(\approx\) |
\(0.4279717183 - 0.1782032251i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.104 - 0.994i)T \) |
| 3 | \( 1 + (-0.978 - 0.207i)T \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 + (-0.978 + 0.207i)T \) |
| 17 | \( 1 + (-0.104 + 0.994i)T \) |
| 19 | \( 1 + (0.669 - 0.743i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.669 + 0.743i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (0.669 + 0.743i)T \) |
| 41 | \( 1 + (-0.978 - 0.207i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.309 + 0.951i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (-0.978 + 0.207i)T \) |
| 61 | \( 1 + (-0.104 + 0.994i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.104 + 0.994i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (-0.809 - 0.587i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.913 + 0.406i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.03708814823213852470892447132, −26.90867612166904870462689182608, −26.58197577721344128771165739530, −25.23456976048851388125639611243, −24.12971063743230035358452061791, −23.0327609342316433905856912407, −22.764437411022794032743764645671, −21.84245598686042080081810013232, −20.043090766793186766163322637323, −18.70049040038358762635473943224, −18.20977982286363463288242220209, −16.76819608302030824323676037111, −16.135681327836425186364378414, −15.395468545010337315277525488482, −14.14091293342419285607700005287, −12.81361395694597620536977972807, −11.728222413314219462996038665551, −10.37182252965247907668967439186, −9.50821266135433758716762845092, −7.81623798236309761467131639081, −6.8423733968291819662071386720, −6.02765269704266549298318823283, −4.62311645829543717503541262095, −3.502263033950399751216364276507, −0.30916625773036625190798221159,
1.33746408528306888309668065736, 3.298104953219341733370646114649, 4.499251712685502426008770464559, 5.68188209097952762884138196519, 7.25866652151817248578530318111, 8.66586635825252738314201659982, 9.84555526598036174977836823871, 10.9581439315872796173654040826, 11.965341652627698447889703549233, 12.61695668130955219835292013176, 13.50081372062490247765059949102, 15.44982422480608566936598069002, 16.4372265397927585257669118099, 17.41708601528916237483711050980, 18.53706548904144125759617654219, 19.45295571988445882953567654614, 20.16685133221474820191635342030, 21.69988017287169101459085928694, 22.24098942522632055930266503089, 23.4195883120064597487495563076, 23.90383835408558518456770513987, 25.558370917961655092538851396322, 26.87506004107282375137686761283, 27.703132965492331389523660922837, 28.60472789330015981698922399129