L(s) = 1 | + (−0.207 − 0.978i)2-s + (0.913 + 0.406i)3-s + (−0.913 + 0.406i)4-s + (0.951 − 0.309i)5-s + (0.207 − 0.978i)6-s + (−0.406 − 0.913i)7-s + (0.587 + 0.809i)8-s + (0.669 + 0.743i)9-s + (−0.5 − 0.866i)10-s − 12-s + (−0.809 + 0.587i)14-s + (0.994 + 0.104i)15-s + (0.669 − 0.743i)16-s + (−0.978 − 0.207i)17-s + (0.587 − 0.809i)18-s + (0.994 − 0.104i)19-s + ⋯ |
L(s) = 1 | + (−0.207 − 0.978i)2-s + (0.913 + 0.406i)3-s + (−0.913 + 0.406i)4-s + (0.951 − 0.309i)5-s + (0.207 − 0.978i)6-s + (−0.406 − 0.913i)7-s + (0.587 + 0.809i)8-s + (0.669 + 0.743i)9-s + (−0.5 − 0.866i)10-s − 12-s + (−0.809 + 0.587i)14-s + (0.994 + 0.104i)15-s + (0.669 − 0.743i)16-s + (−0.978 − 0.207i)17-s + (0.587 − 0.809i)18-s + (0.994 − 0.104i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.140062816 - 0.7155542187i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.140062816 - 0.7155542187i\) |
\(L(1)\) |
\(\approx\) |
\(1.156100296 - 0.5055774135i\) |
\(L(1)\) |
\(\approx\) |
\(1.156100296 - 0.5055774135i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.207 - 0.978i)T \) |
| 3 | \( 1 + (0.913 + 0.406i)T \) |
| 5 | \( 1 + (0.951 - 0.309i)T \) |
| 7 | \( 1 + (-0.406 - 0.913i)T \) |
| 17 | \( 1 + (-0.978 - 0.207i)T \) |
| 19 | \( 1 + (0.994 - 0.104i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.104 - 0.994i)T \) |
| 31 | \( 1 + (-0.951 - 0.309i)T \) |
| 37 | \( 1 + (-0.994 - 0.104i)T \) |
| 41 | \( 1 + (-0.406 + 0.913i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.406 + 0.913i)T \) |
| 61 | \( 1 + (0.978 + 0.207i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.207 + 0.978i)T \) |
| 73 | \( 1 + (-0.587 + 0.809i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.743 - 0.669i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.522396858998126102411439552522, −27.06158955932304646023313217344, −26.18477923788875946184184166729, −25.460757567190928668449275292325, −24.79623912395483725526820577165, −24.02252757086003344047955153400, −22.47290631433394861830146467245, −21.790567182564569132589753956703, −20.4085701448543151157634606891, −19.09520700818390511413693397509, −18.35852121006085916598775433857, −17.62313295500708134924906223451, −16.17234965627782545015370433367, −15.15971370829887164220947971627, −14.319518086984263197426286782980, −13.41378001889767814792232897781, −12.51422681478951470705468241237, −10.372925397689188216642373745803, −9.18381569458704404835318231700, −8.724933462221219094925525452647, −7.17739276908315843629318304569, −6.3577185519683641941623332915, −5.14112145238937495590368952026, −3.2577478116501233589641817640, −1.82279149630850601399151430257,
1.48740413369813207247651329646, 2.783831102713450412174833307306, 3.94648600449030490307073587230, 5.14225013376839579007401097855, 7.18274833514507836441843878175, 8.56722041542487723028538866588, 9.585515818102748794408224489647, 10.11138757925871020067797328604, 11.36744478962915698951129498931, 13.27424919120957206240055841043, 13.32665650860927715621997657193, 14.498419286372019402236413365690, 16.11936976356202139537056988891, 17.203463342239814198986963096742, 18.21298202770117901276448581225, 19.51370708275362668406406677508, 20.18453924855144851611898354228, 20.96430025067784783712512727649, 21.84596617318729952276847343076, 22.783651475035890909316124005477, 24.3344809387386926960462081560, 25.506058932065132459923367705944, 26.37006012662906522017257695858, 26.997941057655853097562562892527, 28.240963646210353145198700253083