L(s) = 1 | + (0.913 − 0.406i)2-s + (0.669 + 0.743i)3-s + (0.669 − 0.743i)4-s + (−0.809 + 0.587i)5-s + (0.913 + 0.406i)6-s + (0.669 − 0.743i)7-s + (0.309 − 0.951i)8-s + (−0.104 + 0.994i)9-s + (−0.5 + 0.866i)10-s + 12-s + (0.309 − 0.951i)14-s + (−0.978 − 0.207i)15-s + (−0.104 − 0.994i)16-s + (0.913 + 0.406i)17-s + (0.309 + 0.951i)18-s + (−0.978 + 0.207i)19-s + ⋯ |
L(s) = 1 | + (0.913 − 0.406i)2-s + (0.669 + 0.743i)3-s + (0.669 − 0.743i)4-s + (−0.809 + 0.587i)5-s + (0.913 + 0.406i)6-s + (0.669 − 0.743i)7-s + (0.309 − 0.951i)8-s + (−0.104 + 0.994i)9-s + (−0.5 + 0.866i)10-s + 12-s + (0.309 − 0.951i)14-s + (−0.978 − 0.207i)15-s + (−0.104 − 0.994i)16-s + (0.913 + 0.406i)17-s + (0.309 + 0.951i)18-s + (−0.978 + 0.207i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.000188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.000188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.049714791 + 0.0001931019070i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.049714791 + 0.0001931019070i\) |
\(L(1)\) |
\(\approx\) |
\(1.864221606 - 0.03268103251i\) |
\(L(1)\) |
\(\approx\) |
\(1.864221606 - 0.03268103251i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.913 - 0.406i)T \) |
| 3 | \( 1 + (0.669 + 0.743i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 7 | \( 1 + (0.669 - 0.743i)T \) |
| 17 | \( 1 + (0.913 + 0.406i)T \) |
| 19 | \( 1 + (-0.978 + 0.207i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.978 - 0.207i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.978 - 0.207i)T \) |
| 41 | \( 1 + (0.669 + 0.743i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.309 - 0.951i)T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (0.669 - 0.743i)T \) |
| 61 | \( 1 + (0.913 + 0.406i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.913 + 0.406i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.809 + 0.587i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.104 + 0.994i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.36900855664370734620474447297, −27.22916351909909406378227751700, −25.925632498296931202824549400974, −25.08209924510384824035649476469, −24.21282640426210924240933606303, −23.72339947311029804851041124288, −22.59023732491488863975913464423, −21.15851563337533035977687856763, −20.547265640182470366365847020637, −19.44880610663378921720703929255, −18.35553223558955709456893192376, −17.03610223141460380663827129174, −15.83829518175030424230659432631, −14.87373104114848215734499078567, −14.1716247354790474595794918645, −12.73654115218462514903052209456, −12.288038198756491735940325967351, −11.21552989820475316798094625731, −8.89704953252529049225696514576, −8.11029217233470194082204260294, −7.2102780642977094684331959573, −5.78856557961830461061743077532, −4.52304744940624065172158291402, −3.241768781099968443103526007792, −1.866112208103397895401479211,
2.01373714220077335367070326843, 3.58734302442645209608662928856, 4.055942106798863021606040758419, 5.4242558675520829492662520060, 7.16883558825074512302467811363, 8.15183663890480901823303853870, 9.939644378778813773283027348472, 10.78568864693392321319572040740, 11.61074140914501886616888793103, 13.083545719142929488229986965459, 14.30670510552270939960162626592, 14.771743781478938315454162413651, 15.74083851382916959879909773144, 16.87254483930570450862497816913, 18.77373218997839024399015641190, 19.61348765960596026242242350472, 20.46950095925797515900605070653, 21.29861956664167934322839431612, 22.26021167749742968851856058806, 23.30562413584905107360896876060, 24.01187345639553101597384804992, 25.39725880342944619668475243866, 26.35625082263200551823470828646, 27.508473119731723583152559918114, 27.99416127342209017329455477429