Properties

Label 1-143-143.74-r1-0-0
Degree 11
Conductor 143143
Sign 0.735+0.677i0.735 + 0.677i
Analytic cond. 15.367415.3674
Root an. cond. 15.367415.3674
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.978 − 0.207i)2-s + (0.913 + 0.406i)3-s + (0.913 − 0.406i)4-s + (0.309 + 0.951i)5-s + (0.978 + 0.207i)6-s + (−0.913 + 0.406i)7-s + (0.809 − 0.587i)8-s + (0.669 + 0.743i)9-s + (0.5 + 0.866i)10-s + 12-s + (−0.809 + 0.587i)14-s + (−0.104 + 0.994i)15-s + (0.669 − 0.743i)16-s + (0.978 + 0.207i)17-s + (0.809 + 0.587i)18-s + (0.104 + 0.994i)19-s + ⋯
L(s)  = 1  + (0.978 − 0.207i)2-s + (0.913 + 0.406i)3-s + (0.913 − 0.406i)4-s + (0.309 + 0.951i)5-s + (0.978 + 0.207i)6-s + (−0.913 + 0.406i)7-s + (0.809 − 0.587i)8-s + (0.669 + 0.743i)9-s + (0.5 + 0.866i)10-s + 12-s + (−0.809 + 0.587i)14-s + (−0.104 + 0.994i)15-s + (0.669 − 0.743i)16-s + (0.978 + 0.207i)17-s + (0.809 + 0.587i)18-s + (0.104 + 0.994i)19-s + ⋯

Functional equation

Λ(s)=(143s/2ΓR(s+1)L(s)=((0.735+0.677i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.735 + 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(143s/2ΓR(s+1)L(s)=((0.735+0.677i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.735 + 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 143143    =    111311 \cdot 13
Sign: 0.735+0.677i0.735 + 0.677i
Analytic conductor: 15.367415.3674
Root analytic conductor: 15.367415.3674
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ143(74,)\chi_{143} (74, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 143, (1: ), 0.735+0.677i)(1,\ 143,\ (1:\ ),\ 0.735 + 0.677i)

Particular Values

L(12)L(\frac{1}{2}) \approx 4.200477779+1.638399186i4.200477779 + 1.638399186i
L(12)L(\frac12) \approx 4.200477779+1.638399186i4.200477779 + 1.638399186i
L(1)L(1) \approx 2.517075101+0.5071180270i2.517075101 + 0.5071180270i
L(1)L(1) \approx 2.517075101+0.5071180270i2.517075101 + 0.5071180270i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad11 1 1
13 1 1
good2 1+(0.9780.207i)T 1 + (0.978 - 0.207i)T
3 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
5 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
7 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
17 1+(0.978+0.207i)T 1 + (0.978 + 0.207i)T
19 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
23 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
29 1+(0.1040.994i)T 1 + (0.104 - 0.994i)T
31 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
37 1+(0.104+0.994i)T 1 + (-0.104 + 0.994i)T
41 1+(0.9130.406i)T 1 + (-0.913 - 0.406i)T
43 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
47 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
53 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
59 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
61 1+(0.978+0.207i)T 1 + (0.978 + 0.207i)T
67 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
71 1+(0.9780.207i)T 1 + (-0.978 - 0.207i)T
73 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
79 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
83 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
89 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
97 1+(0.669+0.743i)T 1 + (0.669 + 0.743i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−28.17349925934869804098145498107, −26.51679397837374638357482420721, −25.56705683538424164289454396454, −25.04939824411002486153661786527, −23.93459888413805591505298938826, −23.30599190499828571902864885669, −21.84215501256502652861770393889, −20.99725456403112042628365611477, −19.990985531784482844875390092010, −19.48330336882719784510374289964, −17.74199715737795305812194357930, −16.435526757506027221973993686268, −15.73246649764482017720444598137, −14.39375044163493263603834626716, −13.50436967090618120326260129794, −12.8629133983784491280839791359, −11.95362695679929239443847630440, −10.09667214387707605623594610150, −8.940843470253624121593594363629, −7.6604391974053215836946636076, −6.64379271791021899115405530389, −5.29659347424948465013738078190, −3.91203388184282661122654671926, −2.85245337111281502467113002038, −1.2941244673100983730508148317, 2.096077616471690955366696051627, 3.08392073973293100829331083088, 3.942443669285619909468182310188, 5.65429713383079518562484773246, 6.69719759958708498165714562023, 8.00809062808935874381575007387, 9.85308612912031550725738647349, 10.25696572479450289698857383188, 11.823589666163398143318567349893, 13.018330269315751741036227322427, 13.98492935218703199466467414941, 14.766104138774527596190641799018, 15.59936101138580924600898327513, 16.63841239760023206966955918338, 18.7680912363026199828554480610, 19.14224431623371461425699986200, 20.46875667506887958390335384639, 21.26993246799346011083356181751, 22.29007296848907175037613921538, 22.78717906635545687008796634416, 24.287344962569638790190093444203, 25.465275964661057147510924879877, 25.770382704561328076372772448674, 27.02108720659230123344036271270, 28.37248314830797173373580972096

Graph of the ZZ-function along the critical line