L(s) = 1 | − i·3-s − i·7-s − 9-s + 11-s − i·13-s − i·17-s + 19-s − 21-s − i·23-s + i·27-s − 29-s + 31-s − i·33-s − 39-s + 41-s + ⋯ |
L(s) = 1 | − i·3-s − i·7-s − 9-s + 11-s − i·13-s − i·17-s + 19-s − 21-s − i·23-s + i·27-s − 29-s + 31-s − i·33-s − 39-s + 41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4161273951 - 1.464829610i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4161273951 - 1.464829610i\) |
\(L(1)\) |
\(\approx\) |
\(0.9031452314 - 0.6412356449i\) |
\(L(1)\) |
\(\approx\) |
\(0.9031452314 - 0.6412356449i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 \) |
| 41 | \( 1 \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 - iT \) |
| 67 | \( 1 \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.131852503979515065510136184229, −20.33401835886887004785519125881, −19.35640683987228156379279406239, −19.01038227623975324475514910674, −17.73778169040339271495618760550, −17.21602124687175638598928575632, −16.30191287214280469138216216526, −15.759139788875553924650058996417, −14.91036377925254939250153521672, −14.412947764066485693937403163994, −13.557687817315782421341557874422, −12.37630901021512045685507999458, −11.60475828581893328536427706066, −11.23780197604042629012600001932, −9.9982831440603782649271073240, −9.359383608110354963040411170054, −8.87384142982389289317130306783, −7.95772159645824757959975644563, −6.72567704700964140456543718132, −5.87442987018099598797454137905, −5.2275956935351423372934727188, −4.14314028136176539599861704874, −3.57623411938214563695067137242, −2.47580949501013067625561606782, −1.44793663606853065704975310059,
0.641540535522301554039404838474, 1.265664950819015169510394845458, 2.569505594509637274348755125759, 3.371492035733630982685071123461, 4.42985207460449764473382160949, 5.480699863912272524984003202384, 6.36229328751180785633903847193, 7.1725234005608543825851073362, 7.66289119856724833105724416385, 8.59096545611020577260402540031, 9.5226615979570096523259202653, 10.39942240919467652877705081856, 11.37859430419103030237364501832, 11.89614871479613752595773313635, 12.884301554474505245333541071589, 13.45644221085132164971819444667, 14.22973070801913416824123152045, 14.7465064955624874926274212202, 16.035112051907190658723969538982, 16.7145702376677028954230802290, 17.51061691462599265980480116819, 17.99776191662624484327956226007, 18.87406518245815372685538039150, 19.6473266470308427147394076373, 20.32591123182763270841016501368