Properties

Label 1-1480-1480.27-r0-0-0
Degree 11
Conductor 14801480
Sign 0.261+0.965i0.261 + 0.965i
Analytic cond. 6.873096.87309
Root an. cond. 6.873096.87309
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 + 0.866i)9-s + 11-s + (0.866 + 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)21-s i·23-s + i·27-s − 29-s + 31-s + (0.866 + 0.5i)33-s + (0.5 + 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 + 0.866i)9-s + 11-s + (0.866 + 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)21-s i·23-s + i·27-s − 29-s + 31-s + (0.866 + 0.5i)33-s + (0.5 + 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯

Functional equation

Λ(s)=(1480s/2ΓR(s)L(s)=((0.261+0.965i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.261 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1480s/2ΓR(s)L(s)=((0.261+0.965i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.261 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 14801480    =    235372^{3} \cdot 5 \cdot 37
Sign: 0.261+0.965i0.261 + 0.965i
Analytic conductor: 6.873096.87309
Root analytic conductor: 6.873096.87309
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1480(27,)\chi_{1480} (27, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1480, (0: ), 0.261+0.965i)(1,\ 1480,\ (0:\ ),\ 0.261 + 0.965i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.074296294+1.587664196i2.074296294 + 1.587664196i
L(12)L(\frac12) \approx 2.074296294+1.587664196i2.074296294 + 1.587664196i
L(1)L(1) \approx 1.560140597+0.5479653961i1.560140597 + 0.5479653961i
L(1)L(1) \approx 1.560140597+0.5479653961i1.560140597 + 0.5479653961i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
37 1 1
good3 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
7 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
11 1+T 1 + T
13 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
17 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
19 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
23 1iT 1 - iT
29 1T 1 - T
31 1+T 1 + T
41 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
43 1+iT 1 + iT
47 1iT 1 - iT
53 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
59 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
61 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
67 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
71 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
73 1iT 1 - iT
79 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
83 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
89 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
97 1iT 1 - iT
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.35712226953831912957126569246, −19.88528968313039133205469653382, −19.09572268238667051285096383458, −18.2594088248092143712669228724, −17.542814267654468884524480496922, −17.043297322213512687175339469720, −15.63494872942117979512582320520, −15.249454889782546505527708910107, −14.31265970416165260448396718637, −13.63886035027610008288997569379, −13.23584745963511944762055479798, −12.08849628761737763881307615611, −11.35775652476355746904280410954, −10.61819639646472963801461940067, −9.42765608658270902722637008093, −8.83133226979306875041186710678, −8.128343512414042149428081792043, −7.22775767544435726145915795240, −6.668175719722171672557294790204, −5.55670034398998495665965233523, −4.328915023182830113214482052459, −3.78452080064938332153321202529, −2.6832275917916785062706246448, −1.70233694643334073589868772920, −0.928040556886346026731283338981, 1.53723684208592308492186726529, 2.04649404605046382904372779818, 3.25025136844035301372177342287, 4.18963664040104006750495487647, 4.62912647028046475037575250980, 5.93379734827555269071192284832, 6.68493586396909130467599986321, 7.89615479460669067712112548663, 8.57798413383891908164535484943, 8.97606320414657687759876005266, 9.97401900096236369855499952070, 10.87082745597060608256055351721, 11.51509250718303814107960034053, 12.462797183757050814377598647118, 13.448159281307343687415458019379, 14.10444173470299571841473832445, 14.94784111228494836488681458056, 15.16048079650482175599708826689, 16.38005742354501361404149249105, 16.83967363913511006444244649505, 17.976891963632462247230056142475, 18.641821304021582548661475825540, 19.389300538161549025680249555382, 20.13416915356659572671615522752, 20.91843716954783717179260106537

Graph of the ZZ-function along the critical line