L(s) = 1 | + (0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 + 0.866i)9-s + 11-s + (0.866 + 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)21-s − i·23-s + i·27-s − 29-s + 31-s + (0.866 + 0.5i)33-s + (0.5 + 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.866 + 0.5i)7-s + (0.5 + 0.866i)9-s + 11-s + (0.866 + 0.5i)13-s + (−0.866 + 0.5i)17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)21-s − i·23-s + i·27-s − 29-s + 31-s + (0.866 + 0.5i)33-s + (0.5 + 0.866i)39-s + (−0.5 + 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.261 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.261 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.074296294 + 1.587664196i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.074296294 + 1.587664196i\) |
\(L(1)\) |
\(\approx\) |
\(1.560140597 + 0.5479653961i\) |
\(L(1)\) |
\(\approx\) |
\(1.560140597 + 0.5479653961i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.866 - 0.5i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.35712226953831912957126569246, −19.88528968313039133205469653382, −19.09572268238667051285096383458, −18.2594088248092143712669228724, −17.542814267654468884524480496922, −17.043297322213512687175339469720, −15.63494872942117979512582320520, −15.249454889782546505527708910107, −14.31265970416165260448396718637, −13.63886035027610008288997569379, −13.23584745963511944762055479798, −12.08849628761737763881307615611, −11.35775652476355746904280410954, −10.61819639646472963801461940067, −9.42765608658270902722637008093, −8.83133226979306875041186710678, −8.128343512414042149428081792043, −7.22775767544435726145915795240, −6.668175719722171672557294790204, −5.55670034398998495665965233523, −4.328915023182830113214482052459, −3.78452080064938332153321202529, −2.6832275917916785062706246448, −1.70233694643334073589868772920, −0.928040556886346026731283338981,
1.53723684208592308492186726529, 2.04649404605046382904372779818, 3.25025136844035301372177342287, 4.18963664040104006750495487647, 4.62912647028046475037575250980, 5.93379734827555269071192284832, 6.68493586396909130467599986321, 7.89615479460669067712112548663, 8.57798413383891908164535484943, 8.97606320414657687759876005266, 9.97401900096236369855499952070, 10.87082745597060608256055351721, 11.51509250718303814107960034053, 12.462797183757050814377598647118, 13.448159281307343687415458019379, 14.10444173470299571841473832445, 14.94784111228494836488681458056, 15.16048079650482175599708826689, 16.38005742354501361404149249105, 16.83967363913511006444244649505, 17.976891963632462247230056142475, 18.641821304021582548661475825540, 19.389300538161549025680249555382, 20.13416915356659572671615522752, 20.91843716954783717179260106537