L(s) = 1 | + (0.5 − 0.866i)3-s + (0.5 − 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s + 11-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (−0.5 + 0.866i)21-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s − 27-s + (−0.5 − 0.866i)29-s + 31-s + (0.5 − 0.866i)33-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (0.5 − 0.866i)5-s − 7-s + (−0.5 − 0.866i)9-s + 11-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (−0.5 + 0.866i)21-s + (0.5 + 0.866i)23-s + (−0.5 − 0.866i)25-s − 27-s + (−0.5 − 0.866i)29-s + 31-s + (0.5 − 0.866i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8257953144 - 0.9108661640i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8257953144 - 0.9108661640i\) |
\(L(1)\) |
\(\approx\) |
\(1.037890799 - 0.5531722440i\) |
\(L(1)\) |
\(\approx\) |
\(1.037890799 - 0.5531722440i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.31434410357549105647708965280, −26.890206944033573488142121358115, −26.544786471549733585429670152830, −25.464180592597059360483414001276, −24.79634870152335305262641967242, −23.00023276838663618871987257960, −22.19478800047481299443907176951, −21.68772346450555481787902989593, −20.35762191198971393820385416683, −19.43698558965462839403091608217, −18.57001026705757354528684544829, −17.05568877817173706166414399073, −16.285661095789286280355040669866, −15.06946106851121444413570225761, −14.27635989363582612330175321585, −13.3926776014099634401444654854, −11.772321501525744549986596394177, −10.61632349284876406755844270679, −9.58682520765520450910480777443, −9.01542667845017877890508971854, −7.14812835749453610040334029642, −6.24056874369908183306854486676, −4.61513805801410232939481757996, −3.36484014326040880869171846597, −2.357642066886381512117172695111,
1.06790722963546637743626535438, 2.51881649374690935933780053936, 3.936167368928725345604960953830, 5.736126303687456700849377301554, 6.62900419327903790987741168732, 7.97784362168114342715596410111, 9.08263412975814841636890051849, 9.86035875503758766117611610379, 11.7162486212093102694749646002, 12.84031014063003643301509961058, 13.21784727048647127852669593264, 14.49060601031081352964076363451, 15.667993637981657776875857236706, 17.10054543238903522316281414843, 17.58071935703127549766428130732, 19.17441800183674730967353386885, 19.69059158638698073741022898677, 20.615289045881211850662105630252, 21.916582061506736551188636802431, 22.94868727961195349525175931236, 24.12256154247257722431751255026, 24.96368428950826514145678730591, 25.48430618554782836023482770258, 26.61520505364004980188404024730, 27.97609404333288980005199467299