L(s) = 1 | + (0.928 − 0.371i)2-s + (−0.995 − 0.0950i)3-s + (0.723 − 0.690i)4-s + (−0.327 + 0.945i)5-s + (−0.959 + 0.281i)6-s + (0.415 − 0.909i)8-s + (0.981 + 0.189i)9-s + (0.0475 + 0.998i)10-s + (0.928 + 0.371i)11-s + (−0.786 + 0.618i)12-s + (0.841 − 0.540i)13-s + (0.415 − 0.909i)15-s + (0.0475 − 0.998i)16-s + (0.235 − 0.971i)17-s + (0.981 − 0.189i)18-s + (0.235 + 0.971i)19-s + ⋯ |
L(s) = 1 | + (0.928 − 0.371i)2-s + (−0.995 − 0.0950i)3-s + (0.723 − 0.690i)4-s + (−0.327 + 0.945i)5-s + (−0.959 + 0.281i)6-s + (0.415 − 0.909i)8-s + (0.981 + 0.189i)9-s + (0.0475 + 0.998i)10-s + (0.928 + 0.371i)11-s + (−0.786 + 0.618i)12-s + (0.841 − 0.540i)13-s + (0.415 − 0.909i)15-s + (0.0475 − 0.998i)16-s + (0.235 − 0.971i)17-s + (0.981 − 0.189i)18-s + (0.235 + 0.971i)19-s + ⋯ |
Λ(s)=(=(161s/2ΓR(s)L(s)(0.920−0.390i)Λ(1−s)
Λ(s)=(=(161s/2ΓR(s)L(s)(0.920−0.390i)Λ(1−s)
Degree: |
1 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.920−0.390i
|
Analytic conductor: |
0.747680 |
Root analytic conductor: |
0.747680 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(128,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 161, (0: ), 0.920−0.390i)
|
Particular Values
L(21) |
≈ |
1.445679390−0.2936913658i |
L(21) |
≈ |
1.445679390−0.2936913658i |
L(1) |
≈ |
1.350529081−0.2183154538i |
L(1) |
≈ |
1.350529081−0.2183154538i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1 |
good | 2 | 1+(0.928−0.371i)T |
| 3 | 1+(−0.995−0.0950i)T |
| 5 | 1+(−0.327+0.945i)T |
| 11 | 1+(0.928+0.371i)T |
| 13 | 1+(0.841−0.540i)T |
| 17 | 1+(0.235−0.971i)T |
| 19 | 1+(0.235+0.971i)T |
| 29 | 1+(−0.959+0.281i)T |
| 31 | 1+(0.580+0.814i)T |
| 37 | 1+(0.981+0.189i)T |
| 41 | 1+(−0.654−0.755i)T |
| 43 | 1+(0.415+0.909i)T |
| 47 | 1+(−0.5−0.866i)T |
| 53 | 1+(−0.888+0.458i)T |
| 59 | 1+(0.0475+0.998i)T |
| 61 | 1+(−0.995+0.0950i)T |
| 67 | 1+(−0.786−0.618i)T |
| 71 | 1+(−0.142+0.989i)T |
| 73 | 1+(0.723−0.690i)T |
| 79 | 1+(−0.888−0.458i)T |
| 83 | 1+(−0.654+0.755i)T |
| 89 | 1+(0.580−0.814i)T |
| 97 | 1+(−0.654−0.755i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−28.14572085729211776387933599688, −26.93852023719700425675405579929, −25.69753785534502818442156889151, −24.41786813505948065298004787587, −23.978570848751675190107520048306, −23.11205246225282858682494083242, −22.07981970398751410513013094679, −21.326156140383827503045713806488, −20.325149333105633408312140901912, −19.077810604809165942085293688201, −17.42776643771223490150136295476, −16.761533169071566356713255053168, −16.00402175281960190397317033852, −15.03582296658008775982457012567, −13.55072586344435218710081123610, −12.73623485748013891811508894616, −11.689854441672068479372428932612, −11.11541004902760052621013956060, −9.28280106805975353026268645559, −7.96578418431574287723180956475, −6.56398983832051731751928559947, −5.7580272668451586865258704518, −4.54426358597432490974143824082, −3.777270911037888829630939339632, −1.44486781501378630698223868481,
1.44438566232075750448317401818, 3.206271991296565957674905376528, 4.29368682712487738911620305688, 5.66387607078406557200050977023, 6.546968345931414919308289293741, 7.49531098518550269631862091289, 9.78992549890037959882007525887, 10.75530910242390796124182016430, 11.58655036978168928603202570299, 12.32289876784576809835344112995, 13.604772229479711068033722901550, 14.64938786083813830242415610869, 15.6473550129369754130431647980, 16.593152135945063260910973956518, 18.080560188376683289146014549508, 18.79704120343295059639521849712, 20.00371895019373621666924696700, 21.135320599702841086754287348257, 22.25683358278860317461473638301, 22.79783376072997745482538651961, 23.35496034661781728516571842958, 24.61147338994684336139733548839, 25.48753448991737861708729357173, 27.15468067015893535260735065725, 27.81408743152763451563421343899