L(s) = 1 | + (0.928 − 0.371i)2-s + (−0.995 − 0.0950i)3-s + (0.723 − 0.690i)4-s + (−0.327 + 0.945i)5-s + (−0.959 + 0.281i)6-s + (0.415 − 0.909i)8-s + (0.981 + 0.189i)9-s + (0.0475 + 0.998i)10-s + (0.928 + 0.371i)11-s + (−0.786 + 0.618i)12-s + (0.841 − 0.540i)13-s + (0.415 − 0.909i)15-s + (0.0475 − 0.998i)16-s + (0.235 − 0.971i)17-s + (0.981 − 0.189i)18-s + (0.235 + 0.971i)19-s + ⋯ |
L(s) = 1 | + (0.928 − 0.371i)2-s + (−0.995 − 0.0950i)3-s + (0.723 − 0.690i)4-s + (−0.327 + 0.945i)5-s + (−0.959 + 0.281i)6-s + (0.415 − 0.909i)8-s + (0.981 + 0.189i)9-s + (0.0475 + 0.998i)10-s + (0.928 + 0.371i)11-s + (−0.786 + 0.618i)12-s + (0.841 − 0.540i)13-s + (0.415 − 0.909i)15-s + (0.0475 − 0.998i)16-s + (0.235 − 0.971i)17-s + (0.981 − 0.189i)18-s + (0.235 + 0.971i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.445679390 - 0.2936913658i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.445679390 - 0.2936913658i\) |
\(L(1)\) |
\(\approx\) |
\(1.350529081 - 0.2183154538i\) |
\(L(1)\) |
\(\approx\) |
\(1.350529081 - 0.2183154538i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.928 - 0.371i)T \) |
| 3 | \( 1 + (-0.995 - 0.0950i)T \) |
| 5 | \( 1 + (-0.327 + 0.945i)T \) |
| 11 | \( 1 + (0.928 + 0.371i)T \) |
| 13 | \( 1 + (0.841 - 0.540i)T \) |
| 17 | \( 1 + (0.235 - 0.971i)T \) |
| 19 | \( 1 + (0.235 + 0.971i)T \) |
| 29 | \( 1 + (-0.959 + 0.281i)T \) |
| 31 | \( 1 + (0.580 + 0.814i)T \) |
| 37 | \( 1 + (0.981 + 0.189i)T \) |
| 41 | \( 1 + (-0.654 - 0.755i)T \) |
| 43 | \( 1 + (0.415 + 0.909i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.888 + 0.458i)T \) |
| 59 | \( 1 + (0.0475 + 0.998i)T \) |
| 61 | \( 1 + (-0.995 + 0.0950i)T \) |
| 67 | \( 1 + (-0.786 - 0.618i)T \) |
| 71 | \( 1 + (-0.142 + 0.989i)T \) |
| 73 | \( 1 + (0.723 - 0.690i)T \) |
| 79 | \( 1 + (-0.888 - 0.458i)T \) |
| 83 | \( 1 + (-0.654 + 0.755i)T \) |
| 89 | \( 1 + (0.580 - 0.814i)T \) |
| 97 | \( 1 + (-0.654 - 0.755i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.14572085729211776387933599688, −26.93852023719700425675405579929, −25.69753785534502818442156889151, −24.41786813505948065298004787587, −23.978570848751675190107520048306, −23.11205246225282858682494083242, −22.07981970398751410513013094679, −21.326156140383827503045713806488, −20.325149333105633408312140901912, −19.077810604809165942085293688201, −17.42776643771223490150136295476, −16.761533169071566356713255053168, −16.00402175281960190397317033852, −15.03582296658008775982457012567, −13.55072586344435218710081123610, −12.73623485748013891811508894616, −11.689854441672068479372428932612, −11.11541004902760052621013956060, −9.28280106805975353026268645559, −7.96578418431574287723180956475, −6.56398983832051731751928559947, −5.7580272668451586865258704518, −4.54426358597432490974143824082, −3.777270911037888829630939339632, −1.44486781501378630698223868481,
1.44438566232075750448317401818, 3.206271991296565957674905376528, 4.29368682712487738911620305688, 5.66387607078406557200050977023, 6.546968345931414919308289293741, 7.49531098518550269631862091289, 9.78992549890037959882007525887, 10.75530910242390796124182016430, 11.58655036978168928603202570299, 12.32289876784576809835344112995, 13.604772229479711068033722901550, 14.64938786083813830242415610869, 15.6473550129369754130431647980, 16.593152135945063260910973956518, 18.080560188376683289146014549508, 18.79704120343295059639521849712, 20.00371895019373621666924696700, 21.135320599702841086754287348257, 22.25683358278860317461473638301, 22.79783376072997745482538651961, 23.35496034661781728516571842958, 24.61147338994684336139733548839, 25.48753448991737861708729357173, 27.15468067015893535260735065725, 27.81408743152763451563421343899