L(s) = 1 | + (−0.654 − 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (0.415 − 0.909i)5-s + (0.142 + 0.989i)6-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.959 + 0.281i)10-s + (0.654 − 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (−0.841 + 0.540i)15-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + (0.415 − 0.909i)18-s + (−0.142 + 0.989i)19-s + ⋯ |
L(s) = 1 | + (−0.654 − 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (0.415 − 0.909i)5-s + (0.142 + 0.989i)6-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.959 + 0.281i)10-s + (0.654 − 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (−0.841 + 0.540i)15-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + (0.415 − 0.909i)18-s + (−0.142 + 0.989i)19-s + ⋯ |
Λ(s)=(=(161s/2ΓR(s)L(s)(−0.764−0.644i)Λ(1−s)
Λ(s)=(=(161s/2ΓR(s)L(s)(−0.764−0.644i)Λ(1−s)
Degree: |
1 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.764−0.644i
|
Analytic conductor: |
0.747680 |
Root analytic conductor: |
0.747680 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(132,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 161, (0: ), −0.764−0.644i)
|
Particular Values
L(21) |
≈ |
0.2180324695−0.5966399603i |
L(21) |
≈ |
0.2180324695−0.5966399603i |
L(1) |
≈ |
0.4986271423−0.4347501709i |
L(1) |
≈ |
0.4986271423−0.4347501709i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1 |
good | 2 | 1+(−0.654−0.755i)T |
| 3 | 1+(−0.841−0.540i)T |
| 5 | 1+(0.415−0.909i)T |
| 11 | 1+(0.654−0.755i)T |
| 13 | 1+(0.959−0.281i)T |
| 17 | 1+(−0.142−0.989i)T |
| 19 | 1+(−0.142+0.989i)T |
| 29 | 1+(−0.142−0.989i)T |
| 31 | 1+(−0.841+0.540i)T |
| 37 | 1+(−0.415−0.909i)T |
| 41 | 1+(−0.415+0.909i)T |
| 43 | 1+(−0.841−0.540i)T |
| 47 | 1−T |
| 53 | 1+(0.959+0.281i)T |
| 59 | 1+(0.959−0.281i)T |
| 61 | 1+(0.841−0.540i)T |
| 67 | 1+(0.654+0.755i)T |
| 71 | 1+(−0.654−0.755i)T |
| 73 | 1+(0.142−0.989i)T |
| 79 | 1+(0.959−0.281i)T |
| 83 | 1+(0.415+0.909i)T |
| 89 | 1+(0.841+0.540i)T |
| 97 | 1+(0.415−0.909i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.9892900028774248450203406688, −27.25560394149928335789126798967, −25.98193699697998832301990384861, −25.79251632915681651094925382655, −24.20825922769926711632978129349, −23.33378689915079100041124594065, −22.473322369514329938518938687998, −21.638085326164475092612940421356, −20.22334856974294646621588764962, −18.934096929878654785599243021359, −17.96602515724918005584047893381, −17.37280531895168709356018734976, −16.37559821991271631249676705263, −15.23498972075297812141573070050, −14.66487554684451763101486538361, −13.2445100684186460594795402825, −11.48718822776663156375670719651, −10.6711253127042574272760713899, −9.79214500060649557684495590592, −8.75392032157110504982822932056, −6.97127832985629699023758208718, −6.44377376719076425739155483117, −5.2932657327746562605205797104, −3.88576218001370271057452721725, −1.64871255878768995867177756000,
0.802866696272522296463450144293, 1.88634489203604345665169947988, 3.77566703716867311987496177939, 5.25568326158553464494039557899, 6.47408877675984108838068349951, 7.95083910928779547301472746357, 8.90087031056658487446545686986, 10.09573315013369146658078979317, 11.263454122043851061987087253584, 12.0204995228708000408241993803, 13.05330135058468614934910858605, 13.79244872037721486880691126122, 16.18605138015820998535351231195, 16.60321628825596102455021783879, 17.67770388522213544950904151899, 18.4286122664025951375335889298, 19.439753706000747548209577755969, 20.54392813363357877649857240136, 21.40775516826510842155590746309, 22.41617829856523798837157228761, 23.42799393407636405063552909855, 24.822519445899349920743594757786, 25.19623428275171171283767811782, 26.82728767262370656827077291882, 27.73859367160972513141268030689