L(s) = 1 | + (−0.654 − 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (0.415 − 0.909i)5-s + (0.142 + 0.989i)6-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.959 + 0.281i)10-s + (0.654 − 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (−0.841 + 0.540i)15-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + (0.415 − 0.909i)18-s + (−0.142 + 0.989i)19-s + ⋯ |
L(s) = 1 | + (−0.654 − 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (0.415 − 0.909i)5-s + (0.142 + 0.989i)6-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.959 + 0.281i)10-s + (0.654 − 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (−0.841 + 0.540i)15-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + (0.415 − 0.909i)18-s + (−0.142 + 0.989i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.764 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.764 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2180324695 - 0.5966399603i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2180324695 - 0.5966399603i\) |
\(L(1)\) |
\(\approx\) |
\(0.4986271423 - 0.4347501709i\) |
\(L(1)\) |
\(\approx\) |
\(0.4986271423 - 0.4347501709i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (-0.654 - 0.755i)T \) |
| 3 | \( 1 + (-0.841 - 0.540i)T \) |
| 5 | \( 1 + (0.415 - 0.909i)T \) |
| 11 | \( 1 + (0.654 - 0.755i)T \) |
| 13 | \( 1 + (0.959 - 0.281i)T \) |
| 17 | \( 1 + (-0.142 - 0.989i)T \) |
| 19 | \( 1 + (-0.142 + 0.989i)T \) |
| 29 | \( 1 + (-0.142 - 0.989i)T \) |
| 31 | \( 1 + (-0.841 + 0.540i)T \) |
| 37 | \( 1 + (-0.415 - 0.909i)T \) |
| 41 | \( 1 + (-0.415 + 0.909i)T \) |
| 43 | \( 1 + (-0.841 - 0.540i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.959 + 0.281i)T \) |
| 59 | \( 1 + (0.959 - 0.281i)T \) |
| 61 | \( 1 + (0.841 - 0.540i)T \) |
| 67 | \( 1 + (0.654 + 0.755i)T \) |
| 71 | \( 1 + (-0.654 - 0.755i)T \) |
| 73 | \( 1 + (0.142 - 0.989i)T \) |
| 79 | \( 1 + (0.959 - 0.281i)T \) |
| 83 | \( 1 + (0.415 + 0.909i)T \) |
| 89 | \( 1 + (0.841 + 0.540i)T \) |
| 97 | \( 1 + (0.415 - 0.909i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.9892900028774248450203406688, −27.25560394149928335789126798967, −25.98193699697998832301990384861, −25.79251632915681651094925382655, −24.20825922769926711632978129349, −23.33378689915079100041124594065, −22.473322369514329938518938687998, −21.638085326164475092612940421356, −20.22334856974294646621588764962, −18.934096929878654785599243021359, −17.96602515724918005584047893381, −17.37280531895168709356018734976, −16.37559821991271631249676705263, −15.23498972075297812141573070050, −14.66487554684451763101486538361, −13.2445100684186460594795402825, −11.48718822776663156375670719651, −10.6711253127042574272760713899, −9.79214500060649557684495590592, −8.75392032157110504982822932056, −6.97127832985629699023758208718, −6.44377376719076425739155483117, −5.2932657327746562605205797104, −3.88576218001370271057452721725, −1.64871255878768995867177756000,
0.802866696272522296463450144293, 1.88634489203604345665169947988, 3.77566703716867311987496177939, 5.25568326158553464494039557899, 6.47408877675984108838068349951, 7.95083910928779547301472746357, 8.90087031056658487446545686986, 10.09573315013369146658078979317, 11.263454122043851061987087253584, 12.0204995228708000408241993803, 13.05330135058468614934910858605, 13.79244872037721486880691126122, 16.18605138015820998535351231195, 16.60321628825596102455021783879, 17.67770388522213544950904151899, 18.4286122664025951375335889298, 19.439753706000747548209577755969, 20.54392813363357877649857240136, 21.40775516826510842155590746309, 22.41617829856523798837157228761, 23.42799393407636405063552909855, 24.822519445899349920743594757786, 25.19623428275171171283767811782, 26.82728767262370656827077291882, 27.73859367160972513141268030689