Properties

Label 1-161-161.132-r0-0-0
Degree 11
Conductor 161161
Sign 0.7640.644i-0.764 - 0.644i
Analytic cond. 0.7476800.747680
Root an. cond. 0.7476800.747680
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.654 − 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (0.415 − 0.909i)5-s + (0.142 + 0.989i)6-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.959 + 0.281i)10-s + (0.654 − 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (−0.841 + 0.540i)15-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + (0.415 − 0.909i)18-s + (−0.142 + 0.989i)19-s + ⋯
L(s)  = 1  + (−0.654 − 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (0.415 − 0.909i)5-s + (0.142 + 0.989i)6-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.959 + 0.281i)10-s + (0.654 − 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (−0.841 + 0.540i)15-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + (0.415 − 0.909i)18-s + (−0.142 + 0.989i)19-s + ⋯

Functional equation

Λ(s)=(161s/2ΓR(s)L(s)=((0.7640.644i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.764 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(161s/2ΓR(s)L(s)=((0.7640.644i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.764 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 161161    =    7237 \cdot 23
Sign: 0.7640.644i-0.764 - 0.644i
Analytic conductor: 0.7476800.747680
Root analytic conductor: 0.7476800.747680
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ161(132,)\chi_{161} (132, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 161, (0: ), 0.7640.644i)(1,\ 161,\ (0:\ ),\ -0.764 - 0.644i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.21803246950.5966399603i0.2180324695 - 0.5966399603i
L(12)L(\frac12) \approx 0.21803246950.5966399603i0.2180324695 - 0.5966399603i
L(1)L(1) \approx 0.49862714230.4347501709i0.4986271423 - 0.4347501709i
L(1)L(1) \approx 0.49862714230.4347501709i0.4986271423 - 0.4347501709i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
23 1 1
good2 1+(0.6540.755i)T 1 + (-0.654 - 0.755i)T
3 1+(0.8410.540i)T 1 + (-0.841 - 0.540i)T
5 1+(0.4150.909i)T 1 + (0.415 - 0.909i)T
11 1+(0.6540.755i)T 1 + (0.654 - 0.755i)T
13 1+(0.9590.281i)T 1 + (0.959 - 0.281i)T
17 1+(0.1420.989i)T 1 + (-0.142 - 0.989i)T
19 1+(0.142+0.989i)T 1 + (-0.142 + 0.989i)T
29 1+(0.1420.989i)T 1 + (-0.142 - 0.989i)T
31 1+(0.841+0.540i)T 1 + (-0.841 + 0.540i)T
37 1+(0.4150.909i)T 1 + (-0.415 - 0.909i)T
41 1+(0.415+0.909i)T 1 + (-0.415 + 0.909i)T
43 1+(0.8410.540i)T 1 + (-0.841 - 0.540i)T
47 1T 1 - T
53 1+(0.959+0.281i)T 1 + (0.959 + 0.281i)T
59 1+(0.9590.281i)T 1 + (0.959 - 0.281i)T
61 1+(0.8410.540i)T 1 + (0.841 - 0.540i)T
67 1+(0.654+0.755i)T 1 + (0.654 + 0.755i)T
71 1+(0.6540.755i)T 1 + (-0.654 - 0.755i)T
73 1+(0.1420.989i)T 1 + (0.142 - 0.989i)T
79 1+(0.9590.281i)T 1 + (0.959 - 0.281i)T
83 1+(0.415+0.909i)T 1 + (0.415 + 0.909i)T
89 1+(0.841+0.540i)T 1 + (0.841 + 0.540i)T
97 1+(0.4150.909i)T 1 + (0.415 - 0.909i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.9892900028774248450203406688, −27.25560394149928335789126798967, −25.98193699697998832301990384861, −25.79251632915681651094925382655, −24.20825922769926711632978129349, −23.33378689915079100041124594065, −22.473322369514329938518938687998, −21.638085326164475092612940421356, −20.22334856974294646621588764962, −18.934096929878654785599243021359, −17.96602515724918005584047893381, −17.37280531895168709356018734976, −16.37559821991271631249676705263, −15.23498972075297812141573070050, −14.66487554684451763101486538361, −13.2445100684186460594795402825, −11.48718822776663156375670719651, −10.6711253127042574272760713899, −9.79214500060649557684495590592, −8.75392032157110504982822932056, −6.97127832985629699023758208718, −6.44377376719076425739155483117, −5.2932657327746562605205797104, −3.88576218001370271057452721725, −1.64871255878768995867177756000, 0.802866696272522296463450144293, 1.88634489203604345665169947988, 3.77566703716867311987496177939, 5.25568326158553464494039557899, 6.47408877675984108838068349951, 7.95083910928779547301472746357, 8.90087031056658487446545686986, 10.09573315013369146658078979317, 11.263454122043851061987087253584, 12.0204995228708000408241993803, 13.05330135058468614934910858605, 13.79244872037721486880691126122, 16.18605138015820998535351231195, 16.60321628825596102455021783879, 17.67770388522213544950904151899, 18.4286122664025951375335889298, 19.439753706000747548209577755969, 20.54392813363357877649857240136, 21.40775516826510842155590746309, 22.41617829856523798837157228761, 23.42799393407636405063552909855, 24.822519445899349920743594757786, 25.19623428275171171283767811782, 26.82728767262370656827077291882, 27.73859367160972513141268030689

Graph of the ZZ-function along the critical line