L(s) = 1 | + (0.928 − 0.371i)2-s + (0.995 + 0.0950i)3-s + (0.723 − 0.690i)4-s + (−0.327 + 0.945i)5-s + (0.959 − 0.281i)6-s + (0.415 − 0.909i)8-s + (0.981 + 0.189i)9-s + (0.0475 + 0.998i)10-s + (−0.928 − 0.371i)11-s + (0.786 − 0.618i)12-s + (−0.841 + 0.540i)13-s + (−0.415 + 0.909i)15-s + (0.0475 − 0.998i)16-s + (0.235 − 0.971i)17-s + (0.981 − 0.189i)18-s + (0.235 + 0.971i)19-s + ⋯ |
L(s) = 1 | + (0.928 − 0.371i)2-s + (0.995 + 0.0950i)3-s + (0.723 − 0.690i)4-s + (−0.327 + 0.945i)5-s + (0.959 − 0.281i)6-s + (0.415 − 0.909i)8-s + (0.981 + 0.189i)9-s + (0.0475 + 0.998i)10-s + (−0.928 − 0.371i)11-s + (0.786 − 0.618i)12-s + (−0.841 + 0.540i)13-s + (−0.415 + 0.909i)15-s + (0.0475 − 0.998i)16-s + (0.235 − 0.971i)17-s + (0.981 − 0.189i)18-s + (0.235 + 0.971i)19-s + ⋯ |
Λ(s)=(=(161s/2ΓR(s)L(s)(0.970−0.242i)Λ(1−s)
Λ(s)=(=(161s/2ΓR(s)L(s)(0.970−0.242i)Λ(1−s)
Degree: |
1 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.970−0.242i
|
Analytic conductor: |
0.747680 |
Root analytic conductor: |
0.747680 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(33,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 161, (0: ), 0.970−0.242i)
|
Particular Values
L(21) |
≈ |
2.318700838−0.2849407876i |
L(21) |
≈ |
2.318700838−0.2849407876i |
L(1) |
≈ |
2.048368748−0.2196474877i |
L(1) |
≈ |
2.048368748−0.2196474877i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1 |
good | 2 | 1+(0.928−0.371i)T |
| 3 | 1+(0.995+0.0950i)T |
| 5 | 1+(−0.327+0.945i)T |
| 11 | 1+(−0.928−0.371i)T |
| 13 | 1+(−0.841+0.540i)T |
| 17 | 1+(0.235−0.971i)T |
| 19 | 1+(0.235+0.971i)T |
| 29 | 1+(−0.959+0.281i)T |
| 31 | 1+(−0.580−0.814i)T |
| 37 | 1+(−0.981−0.189i)T |
| 41 | 1+(0.654+0.755i)T |
| 43 | 1+(−0.415−0.909i)T |
| 47 | 1+(0.5+0.866i)T |
| 53 | 1+(0.888−0.458i)T |
| 59 | 1+(−0.0475−0.998i)T |
| 61 | 1+(−0.995+0.0950i)T |
| 67 | 1+(0.786+0.618i)T |
| 71 | 1+(−0.142+0.989i)T |
| 73 | 1+(−0.723+0.690i)T |
| 79 | 1+(0.888+0.458i)T |
| 83 | 1+(−0.654+0.755i)T |
| 89 | 1+(0.580−0.814i)T |
| 97 | 1+(−0.654−0.755i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.790458886023183978085509737555, −26.45361447943180413067426148762, −25.768219756380943070178928952279, −24.65592728499161548032552245241, −24.1489708644870706197065157472, −23.22024031547833390906511184466, −21.82030229297743594640837223262, −20.97685856968788052013187314976, −20.1531911078527986769127491758, −19.44944711902787567360711796925, −17.777454725167370595589077263913, −16.60197750720280766554934352415, −15.46954906662778384585487872510, −14.99530579600406060867647943292, −13.638061945016323834096611988947, −12.86118572329763924968791922485, −12.19450356122251157415521499604, −10.502551669500252086666673016463, −9.01290408520415896362085527165, −7.93444488953155210789903085365, −7.23510360777051376590383065704, −5.43789389985252006373425667699, −4.484616240899181277891354203448, −3.27158459294185360903244545581, −1.99210984553606555076089587722,
2.127548554919805833124574570129, 3.028402719386306222545655225386, 4.01977818208712066410973650433, 5.424493625955204940424465709950, 7.01715784680665699694292363922, 7.75402664164098899197362721864, 9.56100537031416893786742538825, 10.45878844710511495537355670155, 11.58449068195500671274492453980, 12.77445166585338777093419393412, 13.92507692185224744652840079598, 14.49806350071164565351080179759, 15.42461744564856523552002579471, 16.33005576377385676676690654581, 18.54043974223110068533885472391, 18.94649557393386163875667176880, 20.09614230764193821790635167740, 20.93579900562493019762787836982, 21.852757035778388132613298289654, 22.74623058670269960569125633227, 23.84852115844265970342232311942, 24.707713677522643732802041659548, 25.803627261016900386771361858874, 26.66833577760346630198847796794, 27.619288536994755187090167827751