L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + (0.809 − 0.587i)13-s + (−0.309 − 0.951i)14-s + (−0.809 − 0.587i)16-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s + 23-s + (−0.309 + 0.951i)26-s + (0.809 + 0.587i)28-s + (−0.309 + 0.951i)29-s + (−0.809 + 0.587i)31-s + 32-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + (0.809 − 0.587i)13-s + (−0.309 − 0.951i)14-s + (−0.809 − 0.587i)16-s + (−0.809 − 0.587i)17-s + (0.309 + 0.951i)19-s + 23-s + (−0.309 + 0.951i)26-s + (0.809 + 0.587i)28-s + (−0.309 + 0.951i)29-s + (−0.809 + 0.587i)31-s + 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.935 + 0.352i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.935 + 0.352i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1141487527 + 0.6274404439i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1141487527 + 0.6274404439i\) |
\(L(1)\) |
\(\approx\) |
\(0.5882515645 + 0.2756882404i\) |
\(L(1)\) |
\(\approx\) |
\(0.5882515645 + 0.2756882404i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 13 | \( 1 + (0.809 - 0.587i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (-0.309 - 0.951i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.309 + 0.951i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (-0.309 + 0.951i)T \) |
| 61 | \( 1 + (-0.809 - 0.587i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (-0.809 - 0.587i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.81448192847598631600247546395, −26.385175364803681098718605962553, −25.42254289565428350588451940316, −24.17869839814882233894033155095, −23.06868865519878345711574761540, −21.93667446678877078060218921174, −20.95160198368179826807483363567, −20.03631856427200197728581625519, −19.27644357792080134171292484157, −18.199673677124974653074153418071, −17.19485860413190914624050925084, −16.43040990807027727429972059511, −15.29992435864191493623307957768, −13.586790749215890731409998375142, −12.96291509240260335446657212522, −11.4249236633988036228758212480, −10.81053170308617125517711974268, −9.60630503352334009530913919001, −8.67771170501189553226511112129, −7.39416893689253892737036531219, −6.47134503893866051391434611656, −4.386853267285972901438145330127, −3.31676344806048835327156334702, −1.742671014756052888910236809151, −0.31322995384889749134766877544,
1.48291489354496454678767711815, 3.05324098151383933075942574310, 5.10516213109961780561479852070, 6.06094347112708715771768560564, 7.18632076670254091578242902358, 8.507037558908550243767350643302, 9.183908156869066872218202824107, 10.42858264819383116135397786774, 11.46717312717525959870745035645, 12.80468524783268296961616138228, 14.132983582245589461388101455831, 15.29945064129031728889803606480, 15.9167346683936803174063158998, 16.995593346672095976843945017329, 18.25091081017194975706654863553, 18.64102311444904553698057314683, 19.903870090057880241058034355369, 20.81217823743017814596644526546, 22.2432839399046283395672011587, 23.140251844929290059796285319267, 24.30482130455727553220154049241, 25.20846943613617210940893021657, 25.72424149324767427403676677347, 27.03664295646039374939842414093, 27.66292748054481909424788965074