L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.809 − 0.587i)7-s + (−0.809 − 0.587i)8-s + (−0.309 − 0.951i)13-s + (0.809 + 0.587i)14-s + (0.309 − 0.951i)16-s + (0.309 − 0.951i)17-s + (−0.809 − 0.587i)19-s + 23-s + (0.809 − 0.587i)26-s + (−0.309 + 0.951i)28-s + (0.809 − 0.587i)29-s + (0.309 + 0.951i)31-s + 32-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.809 − 0.587i)7-s + (−0.809 − 0.587i)8-s + (−0.309 − 0.951i)13-s + (0.809 + 0.587i)14-s + (0.309 − 0.951i)16-s + (0.309 − 0.951i)17-s + (−0.809 − 0.587i)19-s + 23-s + (0.809 − 0.587i)26-s + (−0.309 + 0.951i)28-s + (0.809 − 0.587i)29-s + (0.309 + 0.951i)31-s + 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.842202984 + 0.02189922591i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.842202984 + 0.02189922591i\) |
\(L(1)\) |
\(\approx\) |
\(1.180010477 + 0.3156524338i\) |
\(L(1)\) |
\(\approx\) |
\(1.180010477 + 0.3156524338i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 + (0.809 - 0.587i)T \) |
| 13 | \( 1 + (-0.309 - 0.951i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.309 + 0.951i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.809 - 0.587i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.309 + 0.951i)T \) |
| 73 | \( 1 + (0.809 - 0.587i)T \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.614893119725069111727354825, −26.83243495680684989844254730658, −25.52097622552621008047627282981, −24.218956406478270990165688160401, −23.55433176746190092545529767945, −22.37070488875462086967793106542, −21.32239578632439383017542722511, −20.97861580673976930855888011369, −19.5211187522528427653214144076, −18.857226261705920929791695381642, −17.821626195002359017496144288768, −16.749660841192857323870648030997, −15.00020496747456639811077963069, −14.50221901273906989929685545704, −13.20346542761596825317024240470, −12.17927629551741866778475626675, −11.35273895596605748412501472526, −10.31280878021595972422671289341, −9.090879794952387512823221569, −8.14898126453503682677819704259, −6.30168308430869655207464589874, −5.04969840672151703782358970207, −4.0388042415341970205823868748, −2.49820483734751186274472058341, −1.39666831725325105993889984514,
0.675309615403209746515152422862, 2.94401963387254687331720241075, 4.468633205926962461787359406790, 5.27064677035145147833242082612, 6.71979750019681919352456648956, 7.6815253889625976770405007652, 8.61560091843868512512955243955, 9.97019420836844925324660640830, 11.29640661899691209183358456495, 12.62652424648961540220737741404, 13.60820590606683415381143902321, 14.57262681070385785048833071420, 15.39408347671030352527395232758, 16.56954721245639941494306116515, 17.481287659055105882675767517307, 18.1719210670661173625338457347, 19.6094994413403636470873426338, 20.86219841276942533675034378079, 21.69826685353897400514180693792, 23.00751039202771952144827635642, 23.450834401524765493227148684554, 24.74657843366136013348333109870, 25.18340827252035669490682651391, 26.58269143641430988556633112200, 27.136583698082379899401535044