L(s) = 1 | − 2-s + i·3-s + 4-s + i·5-s − i·6-s − i·7-s − 8-s − 9-s − i·10-s − i·11-s + i·12-s + 13-s + i·14-s − 15-s + 16-s + ⋯ |
L(s) = 1 | − 2-s + i·3-s + 4-s + i·5-s − i·6-s − i·7-s − 8-s − 9-s − i·10-s − i·11-s + i·12-s + 13-s + i·14-s − 15-s + 16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3883506224 + 0.1894872842i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3883506224 + 0.1894872842i\) |
\(L(1)\) |
\(\approx\) |
\(0.5927817455 + 0.1936151527i\) |
\(L(1)\) |
\(\approx\) |
\(0.5927817455 + 0.1936151527i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + iT \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + iT \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + iT \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−41.39825263368656834810158053634, −40.123878538062289210737176714428, −38.3670491737333797985499135149, −36.9750433058488300935484291589, −35.83300407184436397685818801208, −35.14296567168541579991627230428, −33.60034550680774720031512265464, −31.5696493152975137686651010417, −30.10578496434668135472201722168, −28.522996391203429046323481231197, −28.00152292947194639614103841511, −25.62481024876169433791299063204, −24.91955176224272177116750484121, −23.53276396731361401358774471776, −20.964356893460047508874269655244, −19.6158544746063732711902498863, −18.30609178276429653661407253897, −17.122130095672791600965426780671, −15.40203147631056025262030921185, −12.86274574324480776117856226684, −11.65632735313783772341642685163, −9.19390267662336140187995090804, −7.97395225057117766202200498016, −6.02106312276084192766295517421, −1.89456288883640063451868939480,
3.38764301980058083148824334443, 6.466503328866556453198478281136, 8.51273109083455322179148702773, 10.41283347696993241919453381820, 11.03897117769565301368588396339, 14.27914098300065745959487204470, 15.854658931004722037734299863, 17.09285647216109024420336241365, 18.76358864398668875311125644434, 20.28073895145710467217235457053, 21.6437758792531046000649108338, 23.41778677783755363216066933962, 25.69146946873353330579060148931, 26.59620981521950272346296366303, 27.49201032500673839848802587111, 29.14964593988215408206112800369, 30.445439668547355789741455455925, 32.676185030466947999125108619010, 33.76074984228369908790641957324, 34.81856497845666396290521055952, 36.601442066436625569348311303850, 37.78303357163219485745268114579, 38.64551375754757981318534880869, 39.95820595043727429615498631813, 42.537824722990093368896081175906