L(s) = 1 | + (−0.0784 − 0.996i)3-s + (−0.382 + 0.923i)7-s + (−0.987 + 0.156i)9-s + (0.972 − 0.233i)11-s + (−0.587 + 0.809i)13-s + (0.453 − 0.891i)19-s + (0.951 + 0.309i)21-s + (−0.972 + 0.233i)23-s + (0.233 + 0.972i)27-s + (−0.996 + 0.0784i)29-s + (−0.649 − 0.760i)31-s + (−0.309 − 0.951i)33-s + (0.972 + 0.233i)37-s + (0.852 + 0.522i)39-s + (−0.852 + 0.522i)41-s + ⋯ |
L(s) = 1 | + (−0.0784 − 0.996i)3-s + (−0.382 + 0.923i)7-s + (−0.987 + 0.156i)9-s + (0.972 − 0.233i)11-s + (−0.587 + 0.809i)13-s + (0.453 − 0.891i)19-s + (0.951 + 0.309i)21-s + (−0.972 + 0.233i)23-s + (0.233 + 0.972i)27-s + (−0.996 + 0.0784i)29-s + (−0.649 − 0.760i)31-s + (−0.309 − 0.951i)33-s + (0.972 + 0.233i)37-s + (0.852 + 0.522i)39-s + (−0.852 + 0.522i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.623 + 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.623 + 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1048551655 + 0.2178954245i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1048551655 + 0.2178954245i\) |
\(L(1)\) |
\(\approx\) |
\(0.7750344450 - 0.1177339012i\) |
\(L(1)\) |
\(\approx\) |
\(0.7750344450 - 0.1177339012i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.0784 - 0.996i)T \) |
| 7 | \( 1 + (-0.382 + 0.923i)T \) |
| 11 | \( 1 + (0.972 - 0.233i)T \) |
| 13 | \( 1 + (-0.587 + 0.809i)T \) |
| 19 | \( 1 + (0.453 - 0.891i)T \) |
| 23 | \( 1 + (-0.972 + 0.233i)T \) |
| 29 | \( 1 + (-0.996 + 0.0784i)T \) |
| 31 | \( 1 + (-0.649 - 0.760i)T \) |
| 37 | \( 1 + (0.972 + 0.233i)T \) |
| 41 | \( 1 + (-0.852 + 0.522i)T \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.891 - 0.453i)T \) |
| 59 | \( 1 + (-0.987 + 0.156i)T \) |
| 61 | \( 1 + (-0.233 - 0.972i)T \) |
| 67 | \( 1 + (0.309 + 0.951i)T \) |
| 71 | \( 1 + (-0.0784 - 0.996i)T \) |
| 73 | \( 1 + (-0.852 - 0.522i)T \) |
| 79 | \( 1 + (-0.649 + 0.760i)T \) |
| 83 | \( 1 + (-0.453 + 0.891i)T \) |
| 89 | \( 1 + (-0.587 - 0.809i)T \) |
| 97 | \( 1 + (-0.996 + 0.0784i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.21732824449432104506578990221, −19.69226451622295386370408234891, −18.56091951991490065723050405925, −17.62201961895278327808480242200, −16.87694125997421713885329751284, −16.54385856126275643629495589270, −15.64226060319783044365655236084, −14.8203605443077300537760982967, −14.26911369881854231690868857044, −13.4990687168156024640627964358, −12.39560873940017563455580637453, −11.79415402995523956013295803417, −10.765834296750277134208072888452, −10.17917939495959482581830766573, −9.627963807385288601582066788867, −8.78638620257080567571544312909, −7.781743726307408088509851454309, −7.00656555530503745410469379654, −5.96042624306117226683205627290, −5.27796275066275678313981842426, −4.11662604504260336042768384704, −3.795886982602081835979313766948, −2.81615508975504654480150001252, −1.47864122577361435312410000328, −0.08619618612333397573105566731,
1.38493900773902843163118548083, 2.1923387761897094386256235958, 3.00867115872285093512379527068, 4.102181295306073192146290363450, 5.27230655932801701422337790773, 6.04586929056525391598076826054, 6.69024825235687523602498859982, 7.45366324052547180653694794512, 8.37204036102776438717951832204, 9.22474291248931553967797859615, 9.65537541496923803921190875981, 11.211473127568846691856417638357, 11.66471577479899614877881213730, 12.25701096132281428938997575130, 13.1014974963335004902351572689, 13.782772951711434407401880981337, 14.60071136718704529915361368352, 15.229128267219606539119849804440, 16.40623680766313733954499425807, 16.85982471328313734766846315810, 17.783669008903321471098641497349, 18.49017574874518273328310699267, 19.00585983830147298372740930063, 19.80868116928908224781212501745, 20.21970572625811836341750565657