L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (0.587 − 0.809i)11-s + (−0.587 − 0.809i)13-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (−0.809 − 0.587i)27-s + (0.951 − 0.309i)29-s + (−0.951 − 0.309i)31-s + (0.951 + 0.309i)33-s + (−0.809 + 0.587i)37-s + (0.587 − 0.809i)39-s + (0.587 + 0.809i)41-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (0.587 − 0.809i)11-s + (−0.587 − 0.809i)13-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (−0.809 − 0.587i)27-s + (0.951 − 0.309i)29-s + (−0.951 − 0.309i)31-s + (0.951 + 0.309i)33-s + (−0.809 + 0.587i)37-s + (0.587 − 0.809i)39-s + (0.587 + 0.809i)41-s + ⋯ |
Λ(s)=(=(1700s/2ΓR(s)L(s)(0.400+0.916i)Λ(1−s)
Λ(s)=(=(1700s/2ΓR(s)L(s)(0.400+0.916i)Λ(1−s)
Degree: |
1 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
0.400+0.916i
|
Analytic conductor: |
7.89476 |
Root analytic conductor: |
7.89476 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1203,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1700, (0: ), 0.400+0.916i)
|
Particular Values
L(21) |
≈ |
1.647549418+1.078498284i |
L(21) |
≈ |
1.647549418+1.078498284i |
L(1) |
≈ |
1.243243384+0.4099743356i |
L(1) |
≈ |
1.243243384+0.4099743356i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(0.309+0.951i)T |
| 7 | 1+T |
| 11 | 1+(0.587−0.809i)T |
| 13 | 1+(−0.587−0.809i)T |
| 19 | 1+(−0.309+0.951i)T |
| 23 | 1+(0.809+0.587i)T |
| 29 | 1+(0.951−0.309i)T |
| 31 | 1+(−0.951−0.309i)T |
| 37 | 1+(−0.809+0.587i)T |
| 41 | 1+(0.587+0.809i)T |
| 43 | 1−iT |
| 47 | 1+(−0.951+0.309i)T |
| 53 | 1+(0.951−0.309i)T |
| 59 | 1+(0.809−0.587i)T |
| 61 | 1+(−0.587+0.809i)T |
| 67 | 1+(0.951+0.309i)T |
| 71 | 1+(0.951−0.309i)T |
| 73 | 1+(0.809+0.587i)T |
| 79 | 1+(0.951−0.309i)T |
| 83 | 1+(0.951+0.309i)T |
| 89 | 1+(0.809+0.587i)T |
| 97 | 1+(0.309+0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.94466812435605777028480222093, −19.5868833365150786552175354400, −18.6708528578099921150072776989, −17.97658523324047172961357559112, −17.33721342988823653837327151316, −16.83949459280930215426654960256, −15.54222074601699309932973157529, −14.684181212702724559392323021035, −14.33481525715943481958688559882, −13.54956600951863788881799234444, −12.54269866532079818839560154295, −12.08538776443324139129711578053, −11.30133809894985422087491850560, −10.49792916519299211651414266990, −9.15277883405182605631142679138, −8.86281902110498020889633149262, −7.83985361074543305297670225777, −6.97127842014123950707240322557, −6.72888090148258571561812277758, −5.33010748450648977183901324491, −4.652988045888649946955767626620, −3.63284125406587680551302936032, −2.31026608791170889717871672381, −1.92724549300279486889347668172, −0.79833751531208440989952239601,
1.05860797462684448818286376055, 2.24577721962499503609173108187, 3.2337134236932346310547551459, 3.94792479096052211280201635396, 4.93901164218368117722450778456, 5.45143812806124083745835371397, 6.46824377456453349199943403501, 7.807027630248599585545681512952, 8.20947585881028771202807522522, 9.066475214100568068128313414735, 9.86498366840490895717545004175, 10.66718252192832884529671844983, 11.28749388343281979751101793302, 11.999963647844752476960411580504, 13.109634035559455722938683793314, 14.00143533462487573804839632514, 14.66373284963568009004269328199, 15.05714048227349206201103773553, 16.02966743421545907500231910641, 16.76739171892933429915012892185, 17.3510438907005544629180051171, 18.15024180699077982215687246130, 19.22824954104745092050403120658, 19.75945279957506908540641350586, 20.595553240657421062491821141819