L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (−0.587 + 0.809i)11-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (−0.809 − 0.587i)27-s + (−0.951 + 0.309i)29-s + (0.951 + 0.309i)31-s + (−0.951 − 0.309i)33-s + (−0.809 + 0.587i)37-s + (−0.587 + 0.809i)39-s + (−0.587 − 0.809i)41-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (−0.587 + 0.809i)11-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (−0.809 − 0.587i)27-s + (−0.951 + 0.309i)29-s + (0.951 + 0.309i)31-s + (−0.951 − 0.309i)33-s + (−0.809 + 0.587i)37-s + (−0.587 + 0.809i)39-s + (−0.587 − 0.809i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.792 + 0.610i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.792 + 0.610i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5375000943 + 1.578078073i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5375000943 + 1.578078073i\) |
\(L(1)\) |
\(\approx\) |
\(1.031110640 + 0.6336477277i\) |
\(L(1)\) |
\(\approx\) |
\(1.031110640 + 0.6336477277i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (-0.587 + 0.809i)T \) |
| 13 | \( 1 + (0.587 + 0.809i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.809 + 0.587i)T \) |
| 29 | \( 1 + (-0.951 + 0.309i)T \) |
| 31 | \( 1 + (0.951 + 0.309i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 41 | \( 1 + (-0.587 - 0.809i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.951 - 0.309i)T \) |
| 53 | \( 1 + (-0.951 + 0.309i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + (0.587 - 0.809i)T \) |
| 67 | \( 1 + (-0.951 - 0.309i)T \) |
| 71 | \( 1 + (-0.951 + 0.309i)T \) |
| 73 | \( 1 + (0.809 + 0.587i)T \) |
| 79 | \( 1 + (-0.951 + 0.309i)T \) |
| 83 | \( 1 + (-0.951 - 0.309i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.03689085203902760161211583067, −19.1185185744307978224222385574, −18.63454631382560133496226073074, −17.79664216581436259193979182349, −17.40953263038598092544721914763, −16.41103614572275732013840407532, −15.35148850660935214038271316704, −14.82453877608629715890759136254, −13.92011376498929623592193024610, −13.27679458099166697149126908321, −12.777163380225405810135931850503, −11.63974253653433279686708685857, −11.15295299928311908473917918324, −10.39239109148024714552495651594, −9.02243865369578103576323582676, −8.45789149018707624944389972302, −7.85198912139121290065993794503, −7.08283229806066183952906574214, −6.080613839277258881589509641611, −5.41752696731194053589017739492, −4.4174128330328629726582315230, −3.16223737439585930783072252794, −2.54760923609527422519490130850, −1.45759572657836103282815079996, −0.57106263585010228977407806584,
1.53948568774449537891869136079, 2.26771374571320146965158646772, 3.472130669665002480410041300759, 4.19468136778602908838926461324, 5.00971051543386970728464680314, 5.583474821487107668876265654020, 6.865259514593484155509984969410, 7.76554441547970420066530294319, 8.52723312725154848662248374997, 9.1582939459290657501802208320, 10.1341405089409593880877110332, 10.6900591146431137558851608337, 11.47709857376327333532380030111, 12.20606110522356213614891599143, 13.3609177564599418091646448845, 14.07411284236564671746202005766, 14.72637146450200518955241722646, 15.43093545334150820685399278988, 15.97864213964980207561554516078, 17.12100459051366982831550021820, 17.32162749451126382900349817965, 18.58651263154112337093591843038, 19.01086638378920101737562101256, 20.26522000028625313256926552663, 20.70529554437056846829160382789