L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (−0.587 + 0.809i)11-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (−0.809 − 0.587i)27-s + (−0.951 + 0.309i)29-s + (0.951 + 0.309i)31-s + (−0.951 − 0.309i)33-s + (−0.809 + 0.587i)37-s + (−0.587 + 0.809i)39-s + (−0.587 − 0.809i)41-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (−0.587 + 0.809i)11-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (−0.809 − 0.587i)27-s + (−0.951 + 0.309i)29-s + (0.951 + 0.309i)31-s + (−0.951 − 0.309i)33-s + (−0.809 + 0.587i)37-s + (−0.587 + 0.809i)39-s + (−0.587 − 0.809i)41-s + ⋯ |
Λ(s)=(=(1700s/2ΓR(s)L(s)(−0.792+0.610i)Λ(1−s)
Λ(s)=(=(1700s/2ΓR(s)L(s)(−0.792+0.610i)Λ(1−s)
Degree: |
1 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
−0.792+0.610i
|
Analytic conductor: |
7.89476 |
Root analytic conductor: |
7.89476 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1347,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1700, (0: ), −0.792+0.610i)
|
Particular Values
L(21) |
≈ |
0.5375000943+1.578078073i |
L(21) |
≈ |
0.5375000943+1.578078073i |
L(1) |
≈ |
1.031110640+0.6336477277i |
L(1) |
≈ |
1.031110640+0.6336477277i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(0.309+0.951i)T |
| 7 | 1+T |
| 11 | 1+(−0.587+0.809i)T |
| 13 | 1+(0.587+0.809i)T |
| 19 | 1+(−0.309+0.951i)T |
| 23 | 1+(0.809+0.587i)T |
| 29 | 1+(−0.951+0.309i)T |
| 31 | 1+(0.951+0.309i)T |
| 37 | 1+(−0.809+0.587i)T |
| 41 | 1+(−0.587−0.809i)T |
| 43 | 1−iT |
| 47 | 1+(0.951−0.309i)T |
| 53 | 1+(−0.951+0.309i)T |
| 59 | 1+(0.809−0.587i)T |
| 61 | 1+(0.587−0.809i)T |
| 67 | 1+(−0.951−0.309i)T |
| 71 | 1+(−0.951+0.309i)T |
| 73 | 1+(0.809+0.587i)T |
| 79 | 1+(−0.951+0.309i)T |
| 83 | 1+(−0.951−0.309i)T |
| 89 | 1+(0.809+0.587i)T |
| 97 | 1+(0.309+0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.03689085203902760161211583067, −19.1185185744307978224222385574, −18.63454631382560133496226073074, −17.79664216581436259193979182349, −17.40953263038598092544721914763, −16.41103614572275732013840407532, −15.35148850660935214038271316704, −14.82453877608629715890759136254, −13.92011376498929623592193024610, −13.27679458099166697149126908321, −12.777163380225405810135931850503, −11.63974253653433279686708685857, −11.15295299928311908473917918324, −10.39239109148024714552495651594, −9.02243865369578103576323582676, −8.45789149018707624944389972302, −7.85198912139121290065993794503, −7.08283229806066183952906574214, −6.080613839277258881589509641611, −5.41752696731194053589017739492, −4.4174128330328629726582315230, −3.16223737439585930783072252794, −2.54760923609527422519490130850, −1.45759572657836103282815079996, −0.57106263585010228977407806584,
1.53948568774449537891869136079, 2.26771374571320146965158646772, 3.472130669665002480410041300759, 4.19468136778602908838926461324, 5.00971051543386970728464680314, 5.583474821487107668876265654020, 6.865259514593484155509984969410, 7.76554441547970420066530294319, 8.52723312725154848662248374997, 9.1582939459290657501802208320, 10.1341405089409593880877110332, 10.6900591146431137558851608337, 11.47709857376327333532380030111, 12.20606110522356213614891599143, 13.3609177564599418091646448845, 14.07411284236564671746202005766, 14.72637146450200518955241722646, 15.43093545334150820685399278988, 15.97864213964980207561554516078, 17.12100459051366982831550021820, 17.32162749451126382900349817965, 18.58651263154112337093591843038, 19.01086638378920101737562101256, 20.26522000028625313256926552663, 20.70529554437056846829160382789