Properties

Label 1-1700-1700.1347-r0-0-0
Degree 11
Conductor 17001700
Sign 0.792+0.610i-0.792 + 0.610i
Analytic cond. 7.894767.89476
Root an. cond. 7.894767.89476
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (−0.587 + 0.809i)11-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (−0.809 − 0.587i)27-s + (−0.951 + 0.309i)29-s + (0.951 + 0.309i)31-s + (−0.951 − 0.309i)33-s + (−0.809 + 0.587i)37-s + (−0.587 + 0.809i)39-s + (−0.587 − 0.809i)41-s + ⋯
L(s)  = 1  + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (−0.587 + 0.809i)11-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (−0.809 − 0.587i)27-s + (−0.951 + 0.309i)29-s + (0.951 + 0.309i)31-s + (−0.951 − 0.309i)33-s + (−0.809 + 0.587i)37-s + (−0.587 + 0.809i)39-s + (−0.587 − 0.809i)41-s + ⋯

Functional equation

Λ(s)=(1700s/2ΓR(s)L(s)=((0.792+0.610i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.792 + 0.610i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1700s/2ΓR(s)L(s)=((0.792+0.610i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.792 + 0.610i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 17001700    =    2252172^{2} \cdot 5^{2} \cdot 17
Sign: 0.792+0.610i-0.792 + 0.610i
Analytic conductor: 7.894767.89476
Root analytic conductor: 7.894767.89476
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1700(1347,)\chi_{1700} (1347, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1700, (0: ), 0.792+0.610i)(1,\ 1700,\ (0:\ ),\ -0.792 + 0.610i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.5375000943+1.578078073i0.5375000943 + 1.578078073i
L(12)L(\frac12) \approx 0.5375000943+1.578078073i0.5375000943 + 1.578078073i
L(1)L(1) \approx 1.031110640+0.6336477277i1.031110640 + 0.6336477277i
L(1)L(1) \approx 1.031110640+0.6336477277i1.031110640 + 0.6336477277i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
17 1 1
good3 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
7 1+T 1 + T
11 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
13 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
19 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
23 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
29 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
31 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
37 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
41 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
43 1iT 1 - iT
47 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
53 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
59 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
61 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
67 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
71 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
73 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
79 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
83 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
89 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
97 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.03689085203902760161211583067, −19.1185185744307978224222385574, −18.63454631382560133496226073074, −17.79664216581436259193979182349, −17.40953263038598092544721914763, −16.41103614572275732013840407532, −15.35148850660935214038271316704, −14.82453877608629715890759136254, −13.92011376498929623592193024610, −13.27679458099166697149126908321, −12.777163380225405810135931850503, −11.63974253653433279686708685857, −11.15295299928311908473917918324, −10.39239109148024714552495651594, −9.02243865369578103576323582676, −8.45789149018707624944389972302, −7.85198912139121290065993794503, −7.08283229806066183952906574214, −6.080613839277258881589509641611, −5.41752696731194053589017739492, −4.4174128330328629726582315230, −3.16223737439585930783072252794, −2.54760923609527422519490130850, −1.45759572657836103282815079996, −0.57106263585010228977407806584, 1.53948568774449537891869136079, 2.26771374571320146965158646772, 3.472130669665002480410041300759, 4.19468136778602908838926461324, 5.00971051543386970728464680314, 5.583474821487107668876265654020, 6.865259514593484155509984969410, 7.76554441547970420066530294319, 8.52723312725154848662248374997, 9.1582939459290657501802208320, 10.1341405089409593880877110332, 10.6900591146431137558851608337, 11.47709857376327333532380030111, 12.20606110522356213614891599143, 13.3609177564599418091646448845, 14.07411284236564671746202005766, 14.72637146450200518955241722646, 15.43093545334150820685399278988, 15.97864213964980207561554516078, 17.12100459051366982831550021820, 17.32162749451126382900349817965, 18.58651263154112337093591843038, 19.01086638378920101737562101256, 20.26522000028625313256926552663, 20.70529554437056846829160382789

Graph of the ZZ-function along the critical line