Properties

Label 1-1700-1700.1483-r0-0-0
Degree 11
Conductor 17001700
Sign 0.400+0.916i-0.400 + 0.916i
Analytic cond. 7.894767.89476
Root an. cond. 7.894767.89476
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 + 0.951i)3-s − 7-s + (−0.809 − 0.587i)9-s + (0.587 + 0.809i)11-s + (0.587 − 0.809i)13-s + (−0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + (−0.809 + 0.587i)23-s + (0.809 − 0.587i)27-s + (0.951 + 0.309i)29-s + (−0.951 + 0.309i)31-s + (−0.951 + 0.309i)33-s + (0.809 + 0.587i)37-s + (0.587 + 0.809i)39-s + (0.587 − 0.809i)41-s + ⋯
L(s)  = 1  + (−0.309 + 0.951i)3-s − 7-s + (−0.809 − 0.587i)9-s + (0.587 + 0.809i)11-s + (0.587 − 0.809i)13-s + (−0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + (−0.809 + 0.587i)23-s + (0.809 − 0.587i)27-s + (0.951 + 0.309i)29-s + (−0.951 + 0.309i)31-s + (−0.951 + 0.309i)33-s + (0.809 + 0.587i)37-s + (0.587 + 0.809i)39-s + (0.587 − 0.809i)41-s + ⋯

Functional equation

Λ(s)=(1700s/2ΓR(s)L(s)=((0.400+0.916i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1700s/2ΓR(s)L(s)=((0.400+0.916i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 17001700    =    2252172^{2} \cdot 5^{2} \cdot 17
Sign: 0.400+0.916i-0.400 + 0.916i
Analytic conductor: 7.894767.89476
Root analytic conductor: 7.894767.89476
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1700(1483,)\chi_{1700} (1483, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1700, (0: ), 0.400+0.916i)(1,\ 1700,\ (0:\ ),\ -0.400 + 0.916i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.5277714601+0.8062410247i0.5277714601 + 0.8062410247i
L(12)L(\frac12) \approx 0.5277714601+0.8062410247i0.5277714601 + 0.8062410247i
L(1)L(1) \approx 0.7816424790+0.3056687227i0.7816424790 + 0.3056687227i
L(1)L(1) \approx 0.7816424790+0.3056687227i0.7816424790 + 0.3056687227i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
17 1 1
good3 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
7 1T 1 - T
11 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
13 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
19 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
23 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
29 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
31 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
37 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
41 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
43 1iT 1 - iT
47 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
53 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
59 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
61 1+(0.5870.809i)T 1 + (-0.587 - 0.809i)T
67 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
71 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
73 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
79 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
83 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
89 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
97 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.825138873233011888661592265478, −19.26449274090803824311803037523, −18.66156035986173348163406698406, −18.09971448012830159899970509867, −16.98847369552191340571391997119, −16.48173868139703741151999380134, −15.977199741877566118273820397341, −14.64406670889991897722750998755, −13.95632124744096002393064521853, −13.39734919377175376926089416810, −12.506484672367041335101215556819, −11.99716495157664542864593094972, −11.14832014280797215828138097081, −10.38127691853272295861040597238, −9.30565795635541385800380779133, −8.61932414050737292984009093445, −7.781701939205178834394399802643, −6.82740959126941995533035514253, −6.12453210221439996787188532921, −5.828925687420782199652117164267, −4.308446945941141431690924203261, −3.511493681370436592723906483713, −2.484474882433385713104637279127, −1.53856484584931261190631074337, −0.44614875644587987638647116073, 0.96154207787641037583288489437, 2.49091775990808348548938798752, 3.360362892114364883135971891926, 4.078383195182941889504536740241, 4.919201169909633747666481742021, 5.90192639640033909386478782743, 6.47687648252087121404238605033, 7.45543292363254265460551814033, 8.618403136479526012811492808985, 9.3223401209046672370981053360, 9.93126452397073537149837171489, 10.64507157884427254836116326717, 11.42192734716910085752720043636, 12.33133519652050514292080522710, 12.9532342450965342347426653957, 13.93923553812098231560793892046, 14.78330766323612713081048300433, 15.59320652655825302378965047954, 15.934281585692468558947584868380, 16.79736876573565677087352339889, 17.58587187693948467845879169501, 18.0833006902148632292812846424, 19.325095611929741817892752384506, 19.990964981908392542283104952417, 20.393526491065592133626997807

Graph of the ZZ-function along the critical line