L(s) = 1 | + (−0.309 + 0.951i)3-s − 7-s + (−0.809 − 0.587i)9-s + (0.587 + 0.809i)11-s + (0.587 − 0.809i)13-s + (−0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + (−0.809 + 0.587i)23-s + (0.809 − 0.587i)27-s + (0.951 + 0.309i)29-s + (−0.951 + 0.309i)31-s + (−0.951 + 0.309i)33-s + (0.809 + 0.587i)37-s + (0.587 + 0.809i)39-s + (0.587 − 0.809i)41-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)3-s − 7-s + (−0.809 − 0.587i)9-s + (0.587 + 0.809i)11-s + (0.587 − 0.809i)13-s + (−0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + (−0.809 + 0.587i)23-s + (0.809 − 0.587i)27-s + (0.951 + 0.309i)29-s + (−0.951 + 0.309i)31-s + (−0.951 + 0.309i)33-s + (0.809 + 0.587i)37-s + (0.587 + 0.809i)39-s + (0.587 − 0.809i)41-s + ⋯ |
Λ(s)=(=(1700s/2ΓR(s)L(s)(−0.400+0.916i)Λ(1−s)
Λ(s)=(=(1700s/2ΓR(s)L(s)(−0.400+0.916i)Λ(1−s)
Degree: |
1 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
−0.400+0.916i
|
Analytic conductor: |
7.89476 |
Root analytic conductor: |
7.89476 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1483,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1700, (0: ), −0.400+0.916i)
|
Particular Values
L(21) |
≈ |
0.5277714601+0.8062410247i |
L(21) |
≈ |
0.5277714601+0.8062410247i |
L(1) |
≈ |
0.7816424790+0.3056687227i |
L(1) |
≈ |
0.7816424790+0.3056687227i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(−0.309+0.951i)T |
| 7 | 1−T |
| 11 | 1+(0.587+0.809i)T |
| 13 | 1+(0.587−0.809i)T |
| 19 | 1+(−0.309−0.951i)T |
| 23 | 1+(−0.809+0.587i)T |
| 29 | 1+(0.951+0.309i)T |
| 31 | 1+(−0.951+0.309i)T |
| 37 | 1+(0.809+0.587i)T |
| 41 | 1+(0.587−0.809i)T |
| 43 | 1−iT |
| 47 | 1+(0.951+0.309i)T |
| 53 | 1+(−0.951−0.309i)T |
| 59 | 1+(0.809+0.587i)T |
| 61 | 1+(−0.587−0.809i)T |
| 67 | 1+(−0.951+0.309i)T |
| 71 | 1+(0.951+0.309i)T |
| 73 | 1+(−0.809+0.587i)T |
| 79 | 1+(0.951+0.309i)T |
| 83 | 1+(−0.951+0.309i)T |
| 89 | 1+(0.809−0.587i)T |
| 97 | 1+(−0.309+0.951i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.825138873233011888661592265478, −19.26449274090803824311803037523, −18.66156035986173348163406698406, −18.09971448012830159899970509867, −16.98847369552191340571391997119, −16.48173868139703741151999380134, −15.977199741877566118273820397341, −14.64406670889991897722750998755, −13.95632124744096002393064521853, −13.39734919377175376926089416810, −12.506484672367041335101215556819, −11.99716495157664542864593094972, −11.14832014280797215828138097081, −10.38127691853272295861040597238, −9.30565795635541385800380779133, −8.61932414050737292984009093445, −7.781701939205178834394399802643, −6.82740959126941995533035514253, −6.12453210221439996787188532921, −5.828925687420782199652117164267, −4.308446945941141431690924203261, −3.511493681370436592723906483713, −2.484474882433385713104637279127, −1.53856484584931261190631074337, −0.44614875644587987638647116073,
0.96154207787641037583288489437, 2.49091775990808348548938798752, 3.360362892114364883135971891926, 4.078383195182941889504536740241, 4.919201169909633747666481742021, 5.90192639640033909386478782743, 6.47687648252087121404238605033, 7.45543292363254265460551814033, 8.618403136479526012811492808985, 9.3223401209046672370981053360, 9.93126452397073537149837171489, 10.64507157884427254836116326717, 11.42192734716910085752720043636, 12.33133519652050514292080522710, 12.9532342450965342347426653957, 13.93923553812098231560793892046, 14.78330766323612713081048300433, 15.59320652655825302378965047954, 15.934281585692468558947584868380, 16.79736876573565677087352339889, 17.58587187693948467845879169501, 18.0833006902148632292812846424, 19.325095611929741817892752384506, 19.990964981908392542283104952417, 20.393526491065592133626997807