L(s) = 1 | + (−0.233 + 0.972i)3-s + (−0.923 − 0.382i)7-s + (−0.891 − 0.453i)9-s + (0.760 + 0.649i)11-s + (−0.951 + 0.309i)13-s + (−0.987 − 0.156i)19-s + (0.587 − 0.809i)21-s + (0.760 + 0.649i)23-s + (0.649 − 0.760i)27-s + (−0.972 − 0.233i)29-s + (0.852 + 0.522i)31-s + (−0.809 + 0.587i)33-s + (−0.760 + 0.649i)37-s + (−0.0784 − 0.996i)39-s + (0.0784 − 0.996i)41-s + ⋯ |
L(s) = 1 | + (−0.233 + 0.972i)3-s + (−0.923 − 0.382i)7-s + (−0.891 − 0.453i)9-s + (0.760 + 0.649i)11-s + (−0.951 + 0.309i)13-s + (−0.987 − 0.156i)19-s + (0.587 − 0.809i)21-s + (0.760 + 0.649i)23-s + (0.649 − 0.760i)27-s + (−0.972 − 0.233i)29-s + (0.852 + 0.522i)31-s + (−0.809 + 0.587i)33-s + (−0.760 + 0.649i)37-s + (−0.0784 − 0.996i)39-s + (0.0784 − 0.996i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3413216164 - 0.2340258218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3413216164 - 0.2340258218i\) |
\(L(1)\) |
\(\approx\) |
\(0.6914678248 + 0.1787922781i\) |
\(L(1)\) |
\(\approx\) |
\(0.6914678248 + 0.1787922781i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.233 + 0.972i)T \) |
| 7 | \( 1 + (-0.923 - 0.382i)T \) |
| 11 | \( 1 + (0.760 + 0.649i)T \) |
| 13 | \( 1 + (-0.951 + 0.309i)T \) |
| 19 | \( 1 + (-0.987 - 0.156i)T \) |
| 23 | \( 1 + (0.760 + 0.649i)T \) |
| 29 | \( 1 + (-0.972 - 0.233i)T \) |
| 31 | \( 1 + (0.852 + 0.522i)T \) |
| 37 | \( 1 + (-0.760 + 0.649i)T \) |
| 41 | \( 1 + (0.0784 - 0.996i)T \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 + (-0.587 + 0.809i)T \) |
| 53 | \( 1 + (-0.156 - 0.987i)T \) |
| 59 | \( 1 + (-0.891 - 0.453i)T \) |
| 61 | \( 1 + (0.649 - 0.760i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (0.233 - 0.972i)T \) |
| 73 | \( 1 + (-0.0784 - 0.996i)T \) |
| 79 | \( 1 + (0.852 - 0.522i)T \) |
| 83 | \( 1 + (-0.987 - 0.156i)T \) |
| 89 | \( 1 + (0.951 + 0.309i)T \) |
| 97 | \( 1 + (0.972 + 0.233i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.1257460868349441452535080968, −19.62507398793495566718669790384, −18.85588897138095028162319193792, −18.59926818406715312137185408930, −17.300442995645648552594824060647, −16.98183866801327271985969310225, −16.24685026773965913342184687497, −15.10079228566983729597009621560, −14.53119176436091592169628802629, −13.55586989957347399010745381109, −12.906649202384899799217569557850, −12.32142450465148916652720316325, −11.62411557563932908312044110238, −10.7627435010386577694430037849, −9.829830209899615426717277443984, −8.8974226028720781158113471780, −8.3061188362397746379461302656, −7.20552259814825661331344326582, −6.62445326375024025436817202031, −5.93470835678968370695977818907, −5.12621831259580404617815328886, −3.87474026598842209394509444570, −2.872637869479108132578247460167, −2.18689622854453391135267640658, −0.96187442681448025595197468084,
0.17652049321092819175152676399, 1.77855478746982932395809979441, 2.97566142863318156808798710779, 3.72017547669794129139339222518, 4.540730698874300231681605585031, 5.209540653189232914800176073165, 6.44078402422867447080687302400, 6.81322584544963210666762781707, 7.98080768083807779701347073036, 9.18384265807631805078264917686, 9.49727292556913951510523288750, 10.252575970724770050461985668428, 11.01814743421726564472853835129, 11.91322815463330605669280981947, 12.56240754236552335518847904456, 13.499609912825210194782854910129, 14.43801911217661283738121700189, 15.04975798319414783179882105226, 15.70649345596263180267280909289, 16.585022357076112984078941658384, 17.17893616999068171814878236214, 17.537089881171102849448672067141, 19.02282428271426367670039081523, 19.47800038350975230800088492319, 20.18695669678544069869211137833