L(s) = 1 | + (−0.233 + 0.972i)3-s + (−0.923 − 0.382i)7-s + (−0.891 − 0.453i)9-s + (0.760 + 0.649i)11-s + (−0.951 + 0.309i)13-s + (−0.987 − 0.156i)19-s + (0.587 − 0.809i)21-s + (0.760 + 0.649i)23-s + (0.649 − 0.760i)27-s + (−0.972 − 0.233i)29-s + (0.852 + 0.522i)31-s + (−0.809 + 0.587i)33-s + (−0.760 + 0.649i)37-s + (−0.0784 − 0.996i)39-s + (0.0784 − 0.996i)41-s + ⋯ |
L(s) = 1 | + (−0.233 + 0.972i)3-s + (−0.923 − 0.382i)7-s + (−0.891 − 0.453i)9-s + (0.760 + 0.649i)11-s + (−0.951 + 0.309i)13-s + (−0.987 − 0.156i)19-s + (0.587 − 0.809i)21-s + (0.760 + 0.649i)23-s + (0.649 − 0.760i)27-s + (−0.972 − 0.233i)29-s + (0.852 + 0.522i)31-s + (−0.809 + 0.587i)33-s + (−0.760 + 0.649i)37-s + (−0.0784 − 0.996i)39-s + (0.0784 − 0.996i)41-s + ⋯ |
Λ(s)=(=(1700s/2ΓR(s)L(s)(0.360−0.932i)Λ(1−s)
Λ(s)=(=(1700s/2ΓR(s)L(s)(0.360−0.932i)Λ(1−s)
Degree: |
1 |
Conductor: |
1700
= 22⋅52⋅17
|
Sign: |
0.360−0.932i
|
Analytic conductor: |
7.89476 |
Root analytic conductor: |
7.89476 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1700(1639,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1700, (0: ), 0.360−0.932i)
|
Particular Values
L(21) |
≈ |
0.3413216164−0.2340258218i |
L(21) |
≈ |
0.3413216164−0.2340258218i |
L(1) |
≈ |
0.6914678248+0.1787922781i |
L(1) |
≈ |
0.6914678248+0.1787922781i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 17 | 1 |
good | 3 | 1+(−0.233+0.972i)T |
| 7 | 1+(−0.923−0.382i)T |
| 11 | 1+(0.760+0.649i)T |
| 13 | 1+(−0.951+0.309i)T |
| 19 | 1+(−0.987−0.156i)T |
| 23 | 1+(0.760+0.649i)T |
| 29 | 1+(−0.972−0.233i)T |
| 31 | 1+(0.852+0.522i)T |
| 37 | 1+(−0.760+0.649i)T |
| 41 | 1+(0.0784−0.996i)T |
| 43 | 1+(−0.707+0.707i)T |
| 47 | 1+(−0.587+0.809i)T |
| 53 | 1+(−0.156−0.987i)T |
| 59 | 1+(−0.891−0.453i)T |
| 61 | 1+(0.649−0.760i)T |
| 67 | 1+(0.809−0.587i)T |
| 71 | 1+(0.233−0.972i)T |
| 73 | 1+(−0.0784−0.996i)T |
| 79 | 1+(0.852−0.522i)T |
| 83 | 1+(−0.987−0.156i)T |
| 89 | 1+(0.951+0.309i)T |
| 97 | 1+(0.972+0.233i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−20.1257460868349441452535080968, −19.62507398793495566718669790384, −18.85588897138095028162319193792, −18.59926818406715312137185408930, −17.300442995645648552594824060647, −16.98183866801327271985969310225, −16.24685026773965913342184687497, −15.10079228566983729597009621560, −14.53119176436091592169628802629, −13.55586989957347399010745381109, −12.906649202384899799217569557850, −12.32142450465148916652720316325, −11.62411557563932908312044110238, −10.7627435010386577694430037849, −9.829830209899615426717277443984, −8.8974226028720781158113471780, −8.3061188362397746379461302656, −7.20552259814825661331344326582, −6.62445326375024025436817202031, −5.93470835678968370695977818907, −5.12621831259580404617815328886, −3.87474026598842209394509444570, −2.872637869479108132578247460167, −2.18689622854453391135267640658, −0.96187442681448025595197468084,
0.17652049321092819175152676399, 1.77855478746982932395809979441, 2.97566142863318156808798710779, 3.72017547669794129139339222518, 4.540730698874300231681605585031, 5.209540653189232914800176073165, 6.44078402422867447080687302400, 6.81322584544963210666762781707, 7.98080768083807779701347073036, 9.18384265807631805078264917686, 9.49727292556913951510523288750, 10.252575970724770050461985668428, 11.01814743421726564472853835129, 11.91322815463330605669280981947, 12.56240754236552335518847904456, 13.499609912825210194782854910129, 14.43801911217661283738121700189, 15.04975798319414783179882105226, 15.70649345596263180267280909289, 16.585022357076112984078941658384, 17.17893616999068171814878236214, 17.537089881171102849448672067141, 19.02282428271426367670039081523, 19.47800038350975230800088492319, 20.18695669678544069869211137833