Properties

Label 1-176-176.83-r0-0-0
Degree 11
Conductor 176176
Sign 0.745+0.666i0.745 + 0.666i
Analytic cond. 0.8173400.817340
Root an. cond. 0.8173400.817340
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.951 − 0.309i)3-s + (−0.587 + 0.809i)5-s + (−0.309 + 0.951i)7-s + (0.809 − 0.587i)9-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)15-s + (0.809 + 0.587i)17-s + (−0.951 + 0.309i)19-s i·21-s + 23-s + (−0.309 − 0.951i)25-s + (0.587 − 0.809i)27-s + (−0.951 − 0.309i)29-s + (0.809 − 0.587i)31-s + (−0.587 − 0.809i)35-s + ⋯
L(s)  = 1  + (0.951 − 0.309i)3-s + (−0.587 + 0.809i)5-s + (−0.309 + 0.951i)7-s + (0.809 − 0.587i)9-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)15-s + (0.809 + 0.587i)17-s + (−0.951 + 0.309i)19-s i·21-s + 23-s + (−0.309 − 0.951i)25-s + (0.587 − 0.809i)27-s + (−0.951 − 0.309i)29-s + (0.809 − 0.587i)31-s + (−0.587 − 0.809i)35-s + ⋯

Functional equation

Λ(s)=(176s/2ΓR(s)L(s)=((0.745+0.666i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.745 + 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(176s/2ΓR(s)L(s)=((0.745+0.666i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.745 + 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 176176    =    24112^{4} \cdot 11
Sign: 0.745+0.666i0.745 + 0.666i
Analytic conductor: 0.8173400.817340
Root analytic conductor: 0.8173400.817340
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ176(83,)\chi_{176} (83, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 176, (0: ), 0.745+0.666i)(1,\ 176,\ (0:\ ),\ 0.745 + 0.666i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.296134289+0.4944231703i1.296134289 + 0.4944231703i
L(12)L(\frac12) \approx 1.296134289+0.4944231703i1.296134289 + 0.4944231703i
L(1)L(1) \approx 1.255097079+0.2246800765i1.255097079 + 0.2246800765i
L(1)L(1) \approx 1.255097079+0.2246800765i1.255097079 + 0.2246800765i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
11 1 1
good3 1+(0.9510.309i)T 1 + (0.951 - 0.309i)T
5 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
7 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
13 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
17 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
19 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
23 1+T 1 + T
29 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
31 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
37 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
41 1+(0.309+0.951i)T 1 + (0.309 + 0.951i)T
43 1iT 1 - iT
47 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
53 1+(0.587+0.809i)T 1 + (0.587 + 0.809i)T
59 1+(0.951+0.309i)T 1 + (0.951 + 0.309i)T
61 1+(0.587+0.809i)T 1 + (-0.587 + 0.809i)T
67 1iT 1 - iT
71 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
73 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
79 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
83 1+(0.5870.809i)T 1 + (0.587 - 0.809i)T
89 1T 1 - T
97 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.408596132665264504014434701109, −26.31323123022234766624764535859, −25.46155904454813855020704839015, −24.55045656055965868541117553586, −23.48344385784408325775023711109, −22.66011159944509160622324149068, −20.99966320602715403809769816425, −20.63669283978393011407491704229, −19.63429536687948896826423428402, −18.955418605587957597656629627761, −17.33781434627564830363028291018, −16.32138579857711808442367720288, −15.564520890700112298497059584674, −14.460600913219159769636176345687, −13.31008727799274801301543898105, −12.690680031935038760465231585981, −11.07181172849811193683793414766, −10.02677004079225044646528428582, −8.89550298713085052084517638982, −8.007956316618966076836581864703, −7.0319598361680353418064854114, −5.13012466528775816024899174565, −4.018737051271669130563780647696, −3.09569856257089845998859122432, −1.15373018883373719059496813108, 1.93389154919065328826768431186, 3.09329205236338307558440427917, 4.07193825302120327902181633398, 6.04267110428003334047249572411, 7.046828778236242166791371511922, 8.211826370394965050194265489740, 9.05837677782602124682232030376, 10.30948215620002322500328614271, 11.63483629369156984878256907700, 12.60098406204527700013224260618, 13.73946474511165209609192290982, 14.92112467557899412511930428520, 15.26688902919600647930796686120, 16.60702977432924351969547776756, 18.23274791889557168229114115927, 19.033631985952707213795370606960, 19.31770196745018829967457296015, 20.86951913880386028040906442288, 21.5561085589345904510264021160, 22.82614588792555706124074198673, 23.7165682318561603963636074954, 24.81766088184709815208323637798, 25.770931212062978833720678770974, 26.28719538511719658636505661457, 27.42893437772540222395672462484

Graph of the ZZ-function along the critical line