L(s) = 1 | + (0.951 − 0.309i)3-s + (−0.587 + 0.809i)5-s + (−0.309 + 0.951i)7-s + (0.809 − 0.587i)9-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)15-s + (0.809 + 0.587i)17-s + (−0.951 + 0.309i)19-s − i·21-s + 23-s + (−0.309 − 0.951i)25-s + (0.587 − 0.809i)27-s + (−0.951 − 0.309i)29-s + (0.809 − 0.587i)31-s + (−0.587 − 0.809i)35-s + ⋯ |
L(s) = 1 | + (0.951 − 0.309i)3-s + (−0.587 + 0.809i)5-s + (−0.309 + 0.951i)7-s + (0.809 − 0.587i)9-s + (0.587 + 0.809i)13-s + (−0.309 + 0.951i)15-s + (0.809 + 0.587i)17-s + (−0.951 + 0.309i)19-s − i·21-s + 23-s + (−0.309 − 0.951i)25-s + (0.587 − 0.809i)27-s + (−0.951 − 0.309i)29-s + (0.809 − 0.587i)31-s + (−0.587 − 0.809i)35-s + ⋯ |
Λ(s)=(=(176s/2ΓR(s)L(s)(0.745+0.666i)Λ(1−s)
Λ(s)=(=(176s/2ΓR(s)L(s)(0.745+0.666i)Λ(1−s)
Degree: |
1 |
Conductor: |
176
= 24⋅11
|
Sign: |
0.745+0.666i
|
Analytic conductor: |
0.817340 |
Root analytic conductor: |
0.817340 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ176(83,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 176, (0: ), 0.745+0.666i)
|
Particular Values
L(21) |
≈ |
1.296134289+0.4944231703i |
L(21) |
≈ |
1.296134289+0.4944231703i |
L(1) |
≈ |
1.255097079+0.2246800765i |
L(1) |
≈ |
1.255097079+0.2246800765i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+(0.951−0.309i)T |
| 5 | 1+(−0.587+0.809i)T |
| 7 | 1+(−0.309+0.951i)T |
| 13 | 1+(0.587+0.809i)T |
| 17 | 1+(0.809+0.587i)T |
| 19 | 1+(−0.951+0.309i)T |
| 23 | 1+T |
| 29 | 1+(−0.951−0.309i)T |
| 31 | 1+(0.809−0.587i)T |
| 37 | 1+(−0.951−0.309i)T |
| 41 | 1+(0.309+0.951i)T |
| 43 | 1−iT |
| 47 | 1+(−0.309−0.951i)T |
| 53 | 1+(0.587+0.809i)T |
| 59 | 1+(0.951+0.309i)T |
| 61 | 1+(−0.587+0.809i)T |
| 67 | 1−iT |
| 71 | 1+(−0.809−0.587i)T |
| 73 | 1+(0.309−0.951i)T |
| 79 | 1+(−0.809+0.587i)T |
| 83 | 1+(0.587−0.809i)T |
| 89 | 1−T |
| 97 | 1+(−0.809+0.587i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.408596132665264504014434701109, −26.31323123022234766624764535859, −25.46155904454813855020704839015, −24.55045656055965868541117553586, −23.48344385784408325775023711109, −22.66011159944509160622324149068, −20.99966320602715403809769816425, −20.63669283978393011407491704229, −19.63429536687948896826423428402, −18.955418605587957597656629627761, −17.33781434627564830363028291018, −16.32138579857711808442367720288, −15.564520890700112298497059584674, −14.460600913219159769636176345687, −13.31008727799274801301543898105, −12.690680031935038760465231585981, −11.07181172849811193683793414766, −10.02677004079225044646528428582, −8.89550298713085052084517638982, −8.007956316618966076836581864703, −7.0319598361680353418064854114, −5.13012466528775816024899174565, −4.018737051271669130563780647696, −3.09569856257089845998859122432, −1.15373018883373719059496813108,
1.93389154919065328826768431186, 3.09329205236338307558440427917, 4.07193825302120327902181633398, 6.04267110428003334047249572411, 7.046828778236242166791371511922, 8.211826370394965050194265489740, 9.05837677782602124682232030376, 10.30948215620002322500328614271, 11.63483629369156984878256907700, 12.60098406204527700013224260618, 13.73946474511165209609192290982, 14.92112467557899412511930428520, 15.26688902919600647930796686120, 16.60702977432924351969547776756, 18.23274791889557168229114115927, 19.033631985952707213795370606960, 19.31770196745018829967457296015, 20.86951913880386028040906442288, 21.5561085589345904510264021160, 22.82614588792555706124074198673, 23.7165682318561603963636074954, 24.81766088184709815208323637798, 25.770931212062978833720678770974, 26.28719538511719658636505661457, 27.42893437772540222395672462484