L(s) = 1 | + (0.5 + 0.866i)7-s + (0.104 − 0.994i)11-s + (0.104 + 0.994i)13-s + (−0.309 + 0.951i)17-s + (0.309 − 0.951i)19-s + (0.913 − 0.406i)23-s + (0.669 − 0.743i)29-s + (−0.669 − 0.743i)31-s + (0.809 − 0.587i)37-s + (0.104 + 0.994i)41-s + (−0.5 − 0.866i)43-s + (0.669 − 0.743i)47-s + (−0.5 + 0.866i)49-s + (0.309 + 0.951i)53-s + (0.104 + 0.994i)59-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)7-s + (0.104 − 0.994i)11-s + (0.104 + 0.994i)13-s + (−0.309 + 0.951i)17-s + (0.309 − 0.951i)19-s + (0.913 − 0.406i)23-s + (0.669 − 0.743i)29-s + (−0.669 − 0.743i)31-s + (0.809 − 0.587i)37-s + (0.104 + 0.994i)41-s + (−0.5 − 0.866i)43-s + (0.669 − 0.743i)47-s + (−0.5 + 0.866i)49-s + (0.309 + 0.951i)53-s + (0.104 + 0.994i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.959 + 0.282i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.959 + 0.282i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.759554714 + 0.2535557077i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.759554714 + 0.2535557077i\) |
\(L(1)\) |
\(\approx\) |
\(1.188166106 + 0.08678488697i\) |
\(L(1)\) |
\(\approx\) |
\(1.188166106 + 0.08678488697i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.104 - 0.994i)T \) |
| 13 | \( 1 + (0.104 + 0.994i)T \) |
| 17 | \( 1 + (-0.309 + 0.951i)T \) |
| 19 | \( 1 + (0.309 - 0.951i)T \) |
| 23 | \( 1 + (0.913 - 0.406i)T \) |
| 29 | \( 1 + (0.669 - 0.743i)T \) |
| 31 | \( 1 + (-0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.104 + 0.994i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.669 - 0.743i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.104 - 0.994i)T \) |
| 67 | \( 1 + (0.669 + 0.743i)T \) |
| 71 | \( 1 + (0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (-0.669 + 0.743i)T \) |
| 83 | \( 1 + (0.978 - 0.207i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.669 - 0.743i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.31769681038171396966522477742, −19.63228149013610155346792794234, −18.54511012409298378239593900083, −17.82762939582480868896357115450, −17.41355790218552314228706570650, −16.47012098017569267276192564726, −15.78984370284282948874010780349, −14.84737239131098550973864812272, −14.346621673733952080000049888344, −13.45469682459760165317762953357, −12.763207316503517087572049160907, −11.9635045194877071584248823706, −11.086966304344001737427410157881, −10.3916020210057211072421999333, −9.7254605226036977272766916812, −8.80118947914087871158539087709, −7.78651805528252078913332254640, −7.32124056867254639677471705063, −6.49215028709643826843001239178, −5.24786259301647408530786192560, −4.78530589596228940959797807513, −3.742684991896335812762490428922, −2.92025873747630888290018918719, −1.72527547100092491031411791742, −0.8606745948746860729536106508,
0.900046445456895273829818705892, 2.05505737891670183408208720571, 2.78085501189164093919793187807, 3.912925034109424307491870966688, 4.70803208451950802127820670806, 5.67157625639123768528517084702, 6.30727630142096983330828362950, 7.21574379180619511055484701467, 8.29786085813350075828122747178, 8.81917902840999379145999500344, 9.45420418849279789757972699321, 10.65675314224221897812069779264, 11.34613395321964245360001906527, 11.8104293117783363618917352095, 12.85711063425353387818241718900, 13.53173451855245171645321450297, 14.36496206599711199841074416063, 15.074419216899465376146227454201, 15.724550296944190343258134175762, 16.63704298118605262496239921615, 17.20513241536625156009614855492, 18.15868971930268820774893091612, 18.78565049047088805673571463087, 19.34249614256485559089181632816, 20.20489716999850082197217458024