L(s) = 1 | + (−0.866 + 0.5i)7-s + (0.913 + 0.406i)11-s + (−0.406 − 0.913i)13-s + (−0.951 + 0.309i)17-s + (0.309 + 0.951i)19-s + (−0.994 + 0.104i)23-s + (0.978 − 0.207i)29-s + (−0.978 − 0.207i)31-s + (0.587 − 0.809i)37-s + (−0.913 + 0.406i)41-s + (−0.866 + 0.5i)43-s + (−0.207 − 0.978i)47-s + (0.5 − 0.866i)49-s + (0.951 + 0.309i)53-s + (−0.913 + 0.406i)59-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)7-s + (0.913 + 0.406i)11-s + (−0.406 − 0.913i)13-s + (−0.951 + 0.309i)17-s + (0.309 + 0.951i)19-s + (−0.994 + 0.104i)23-s + (0.978 − 0.207i)29-s + (−0.978 − 0.207i)31-s + (0.587 − 0.809i)37-s + (−0.913 + 0.406i)41-s + (−0.866 + 0.5i)43-s + (−0.207 − 0.978i)47-s + (0.5 − 0.866i)49-s + (0.951 + 0.309i)53-s + (−0.913 + 0.406i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.916 - 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.916 - 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01821360798 - 0.08718362399i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01821360798 - 0.08718362399i\) |
\(L(1)\) |
\(\approx\) |
\(0.7768512248 + 0.04057857096i\) |
\(L(1)\) |
\(\approx\) |
\(0.7768512248 + 0.04057857096i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.913 + 0.406i)T \) |
| 13 | \( 1 + (-0.406 - 0.913i)T \) |
| 17 | \( 1 + (-0.951 + 0.309i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.994 + 0.104i)T \) |
| 29 | \( 1 + (0.978 - 0.207i)T \) |
| 31 | \( 1 + (-0.978 - 0.207i)T \) |
| 37 | \( 1 + (0.587 - 0.809i)T \) |
| 41 | \( 1 + (-0.913 + 0.406i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 + (-0.207 - 0.978i)T \) |
| 53 | \( 1 + (0.951 + 0.309i)T \) |
| 59 | \( 1 + (-0.913 + 0.406i)T \) |
| 61 | \( 1 + (-0.913 - 0.406i)T \) |
| 67 | \( 1 + (0.207 - 0.978i)T \) |
| 71 | \( 1 + (-0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.978 - 0.207i)T \) |
| 83 | \( 1 + (0.743 + 0.669i)T \) |
| 89 | \( 1 + (-0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.207 + 0.978i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.04262028328982029032844459784, −20.00052986313866687513969422657, −19.16901768775666979523176864875, −18.34957828263001729622130698515, −17.49748786778897665866618397664, −16.7538210511278644365060612166, −16.19830460733234878184453669072, −15.46797303921547229625921334277, −14.471495034197165472237325638056, −13.75877911677391204759327410453, −13.28391316178291896840935777368, −12.188758653495869856234995688181, −11.63362549928744006564165945932, −10.77836686492040468025498735112, −9.87649007984227046767674254103, −9.20735228253521492446660698547, −8.58821497131260930588988180623, −7.33674126806694326900945073517, −6.7057311575465062681584268673, −6.19070376484107263608869170034, −4.89749339374391682989505597670, −4.17049968899917446178297714866, −3.34025837824566655591982472881, −2.38676243395002914970236697474, −1.26828126876440409836568455908,
0.031367621228065306024729233575, 1.54945204285917583171935493470, 2.46682915415177816566459204601, 3.44580727836090186451572894791, 4.1688125644052255920238933643, 5.275923721086239778285965910127, 6.11197134574765969413198205528, 6.70112867863060703467247783007, 7.70854429024353612977880870246, 8.52189210079761378516233626984, 9.40985431488211004007568394528, 9.963386998108973456465548981671, 10.76964435490155694283807959341, 11.94189578557000306750857650480, 12.27827380057505682597795897765, 13.13653814336921165837567160839, 13.89011071756739865593758560655, 14.92514348035875340397341507731, 15.28473289309303850360963298766, 16.30041967375302641937854273012, 16.7932503301040042388298746879, 17.86588342757115182376955178126, 18.23700527230334048320940291235, 19.30043608022803010809077455372, 19.97236623115307685855769066160