Properties

Label 1-1800-1800.59-r0-0-0
Degree 11
Conductor 18001800
Sign 0.7040.709i0.704 - 0.709i
Analytic cond. 8.359168.35916
Root an. cond. 8.359168.35916
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)7-s + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)13-s + (−0.809 − 0.587i)17-s + (−0.809 − 0.587i)19-s + (−0.669 + 0.743i)23-s + (−0.104 − 0.994i)29-s + (0.104 − 0.994i)31-s + (0.309 − 0.951i)37-s + (0.978 − 0.207i)41-s + (0.5 − 0.866i)43-s + (0.104 + 0.994i)47-s + (−0.5 − 0.866i)49-s + (0.809 − 0.587i)53-s + (0.978 − 0.207i)59-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)7-s + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)13-s + (−0.809 − 0.587i)17-s + (−0.809 − 0.587i)19-s + (−0.669 + 0.743i)23-s + (−0.104 − 0.994i)29-s + (0.104 − 0.994i)31-s + (0.309 − 0.951i)37-s + (0.978 − 0.207i)41-s + (0.5 − 0.866i)43-s + (0.104 + 0.994i)47-s + (−0.5 − 0.866i)49-s + (0.809 − 0.587i)53-s + (0.978 − 0.207i)59-s + ⋯

Functional equation

Λ(s)=(1800s/2ΓR(s)L(s)=((0.7040.709i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1800s/2ΓR(s)L(s)=((0.7040.709i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 18001800    =    2332522^{3} \cdot 3^{2} \cdot 5^{2}
Sign: 0.7040.709i0.704 - 0.709i
Analytic conductor: 8.359168.35916
Root analytic conductor: 8.359168.35916
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1800(59,)\chi_{1800} (59, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1800, (0: ), 0.7040.709i)(1,\ 1800,\ (0:\ ),\ 0.704 - 0.709i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.0271032320.4275418108i1.027103232 - 0.4275418108i
L(12)L(\frac12) \approx 1.0271032320.4275418108i1.027103232 - 0.4275418108i
L(1)L(1) \approx 0.9291205232+0.01275877398i0.9291205232 + 0.01275877398i
L(1)L(1) \approx 0.9291205232+0.01275877398i0.9291205232 + 0.01275877398i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1 1
good7 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
11 1+(0.978+0.207i)T 1 + (0.978 + 0.207i)T
13 1+(0.978+0.207i)T 1 + (-0.978 + 0.207i)T
17 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
19 1+(0.8090.587i)T 1 + (-0.809 - 0.587i)T
23 1+(0.669+0.743i)T 1 + (-0.669 + 0.743i)T
29 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
31 1+(0.1040.994i)T 1 + (0.104 - 0.994i)T
37 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
41 1+(0.9780.207i)T 1 + (0.978 - 0.207i)T
43 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
47 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
53 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
59 1+(0.9780.207i)T 1 + (0.978 - 0.207i)T
61 1+(0.978+0.207i)T 1 + (0.978 + 0.207i)T
67 1+(0.1040.994i)T 1 + (0.104 - 0.994i)T
71 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
73 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
79 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
83 1+(0.9130.406i)T 1 + (0.913 - 0.406i)T
89 1+(0.3090.951i)T 1 + (-0.309 - 0.951i)T
97 1+(0.104+0.994i)T 1 + (0.104 + 0.994i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−20.03853671122189671145771296540, −19.670688440562386609363768207911, −19.04052232071214029554931070513, −17.92731292120082453795463679784, −17.298740090560240027174196145279, −16.60734543828966327967215219700, −16.100476344505751558332479800060, −14.8516932807257989536336305264, −14.510324392796024776313579682884, −13.61816559209301317164090071783, −12.77119056947466925285071462133, −12.23716396424071641136770471815, −11.22875001394572572167303917589, −10.41804093712964388965940813103, −9.89559747430292640417078500563, −8.894763985969988261355380670560, −8.211262411375715411819305989737, −7.11680407711391294733819429750, −6.62039012662900805406745888176, −5.79231724724445876002881566850, −4.523138183247230619116042519941, −4.0443618780320481671612202078, −3.061793687184466648181343508199, −2.006246052062899966683307822507, −0.923563628606952795530566917817, 0.46775391537895691160162973597, 2.16024702919748377134767484424, 2.430905069690093568328756010978, 3.814668388051827791625945165543, 4.47128051921847023077438621212, 5.53346582810865885078857534307, 6.2893319164555092307168450603, 7.030207963806101496864589238223, 7.88790096353740207573072698115, 9.1233719992353042320595914145, 9.260418739375843233769694739555, 10.18054115004643135334162245186, 11.384140743432060523023475862949, 11.797456664299385171419709085735, 12.63413157501773734330200706706, 13.33310153695511774134292067936, 14.28133591335174186887982292930, 14.972618415805690838209311120669, 15.634983138478694403978731367608, 16.35917890821525880774177028709, 17.36394714080026982658609878088, 17.6889158702951476348453124455, 18.80466309134208535833637181677, 19.44174573362615587830329305945, 19.83835293975147858064314457460

Graph of the ZZ-function along the critical line