L(s) = 1 | + (−0.5 + 0.866i)7-s + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)13-s + (−0.809 − 0.587i)17-s + (−0.809 − 0.587i)19-s + (−0.669 + 0.743i)23-s + (−0.104 − 0.994i)29-s + (0.104 − 0.994i)31-s + (0.309 − 0.951i)37-s + (0.978 − 0.207i)41-s + (0.5 − 0.866i)43-s + (0.104 + 0.994i)47-s + (−0.5 − 0.866i)49-s + (0.809 − 0.587i)53-s + (0.978 − 0.207i)59-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)7-s + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)13-s + (−0.809 − 0.587i)17-s + (−0.809 − 0.587i)19-s + (−0.669 + 0.743i)23-s + (−0.104 − 0.994i)29-s + (0.104 − 0.994i)31-s + (0.309 − 0.951i)37-s + (0.978 − 0.207i)41-s + (0.5 − 0.866i)43-s + (0.104 + 0.994i)47-s + (−0.5 − 0.866i)49-s + (0.809 − 0.587i)53-s + (0.978 − 0.207i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.027103232 - 0.4275418108i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.027103232 - 0.4275418108i\) |
\(L(1)\) |
\(\approx\) |
\(0.9291205232 + 0.01275877398i\) |
\(L(1)\) |
\(\approx\) |
\(0.9291205232 + 0.01275877398i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.978 + 0.207i)T \) |
| 13 | \( 1 + (-0.978 + 0.207i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.669 + 0.743i)T \) |
| 29 | \( 1 + (-0.104 - 0.994i)T \) |
| 31 | \( 1 + (0.104 - 0.994i)T \) |
| 37 | \( 1 + (0.309 - 0.951i)T \) |
| 41 | \( 1 + (0.978 - 0.207i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.104 + 0.994i)T \) |
| 53 | \( 1 + (0.809 - 0.587i)T \) |
| 59 | \( 1 + (0.978 - 0.207i)T \) |
| 61 | \( 1 + (0.978 + 0.207i)T \) |
| 67 | \( 1 + (0.104 - 0.994i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.309 - 0.951i)T \) |
| 79 | \( 1 + (0.104 + 0.994i)T \) |
| 83 | \( 1 + (0.913 - 0.406i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.104 + 0.994i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.03853671122189671145771296540, −19.670688440562386609363768207911, −19.04052232071214029554931070513, −17.92731292120082453795463679784, −17.298740090560240027174196145279, −16.60734543828966327967215219700, −16.100476344505751558332479800060, −14.8516932807257989536336305264, −14.510324392796024776313579682884, −13.61816559209301317164090071783, −12.77119056947466925285071462133, −12.23716396424071641136770471815, −11.22875001394572572167303917589, −10.41804093712964388965940813103, −9.89559747430292640417078500563, −8.894763985969988261355380670560, −8.211262411375715411819305989737, −7.11680407711391294733819429750, −6.62039012662900805406745888176, −5.79231724724445876002881566850, −4.523138183247230619116042519941, −4.0443618780320481671612202078, −3.061793687184466648181343508199, −2.006246052062899966683307822507, −0.923563628606952795530566917817,
0.46775391537895691160162973597, 2.16024702919748377134767484424, 2.430905069690093568328756010978, 3.814668388051827791625945165543, 4.47128051921847023077438621212, 5.53346582810865885078857534307, 6.2893319164555092307168450603, 7.030207963806101496864589238223, 7.88790096353740207573072698115, 9.1233719992353042320595914145, 9.260418739375843233769694739555, 10.18054115004643135334162245186, 11.384140743432060523023475862949, 11.797456664299385171419709085735, 12.63413157501773734330200706706, 13.33310153695511774134292067936, 14.28133591335174186887982292930, 14.972618415805690838209311120669, 15.634983138478694403978731367608, 16.35917890821525880774177028709, 17.36394714080026982658609878088, 17.6889158702951476348453124455, 18.80466309134208535833637181677, 19.44174573362615587830329305945, 19.83835293975147858064314457460