Properties

Label 1-185-185.128-r0-0-0
Degree 11
Conductor 185185
Sign 0.999+0.00624i0.999 + 0.00624i
Analytic cond. 0.8591360.859136
Root an. cond. 0.8591360.859136
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.939 − 0.342i)2-s + (−0.342 + 0.939i)3-s + (0.766 − 0.642i)4-s + i·6-s + (0.984 − 0.173i)7-s + (0.5 − 0.866i)8-s + (−0.766 − 0.642i)9-s + (0.5 − 0.866i)11-s + (0.342 + 0.939i)12-s + (−0.766 + 0.642i)13-s + (0.866 − 0.5i)14-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)17-s + (−0.939 − 0.342i)18-s + (−0.342 + 0.939i)19-s + ⋯
L(s)  = 1  + (0.939 − 0.342i)2-s + (−0.342 + 0.939i)3-s + (0.766 − 0.642i)4-s + i·6-s + (0.984 − 0.173i)7-s + (0.5 − 0.866i)8-s + (−0.766 − 0.642i)9-s + (0.5 − 0.866i)11-s + (0.342 + 0.939i)12-s + (−0.766 + 0.642i)13-s + (0.866 − 0.5i)14-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)17-s + (−0.939 − 0.342i)18-s + (−0.342 + 0.939i)19-s + ⋯

Functional equation

Λ(s)=(185s/2ΓR(s)L(s)=((0.999+0.00624i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00624i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(185s/2ΓR(s)L(s)=((0.999+0.00624i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00624i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 185185    =    5375 \cdot 37
Sign: 0.999+0.00624i0.999 + 0.00624i
Analytic conductor: 0.8591360.859136
Root analytic conductor: 0.8591360.859136
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ185(128,)\chi_{185} (128, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 185, (0: ), 0.999+0.00624i)(1,\ 185,\ (0:\ ),\ 0.999 + 0.00624i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.924940265+0.006012641163i1.924940265 + 0.006012641163i
L(12)L(\frac12) \approx 1.924940265+0.006012641163i1.924940265 + 0.006012641163i
L(1)L(1) \approx 1.692466203+0.009403137857i1.692466203 + 0.009403137857i
L(1)L(1) \approx 1.692466203+0.009403137857i1.692466203 + 0.009403137857i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
37 1 1
good2 1+(0.9390.342i)T 1 + (0.939 - 0.342i)T
3 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
7 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
11 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
13 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
17 1+(0.766+0.642i)T 1 + (0.766 + 0.642i)T
19 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
23 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
29 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
31 1iT 1 - iT
41 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
43 1T 1 - T
47 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
53 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
59 1+(0.9840.173i)T 1 + (-0.984 - 0.173i)T
61 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
67 1+(0.984+0.173i)T 1 + (-0.984 + 0.173i)T
71 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
73 1iT 1 - iT
79 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
83 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
89 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
97 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.293760887072240693624515754247, −25.79588023073830272856879642300, −24.911505485619032831144501738653, −24.41307035293562318934701099648, −23.40433080980754122979260513919, −22.664756858131987193073151211814, −21.73783794777798558664161553259, −20.51363613791902271803031200799, −19.73786882215556079922333865664, −18.266329905415554459663959080581, −17.4121675732776535166407180760, −16.64953170903082168245897180759, −15.055367684692007167418364329165, −14.49598532793796757966652872485, −13.362346083818104661854796485504, −12.340600423282270314465632979345, −11.764327124639444664959380095232, −10.616078097679487063312453421849, −8.629287978835260773387302339811, −7.464340991828687072836325143115, −6.85538229578964000177701991679, −5.38592283886597652769169656939, −4.73434300387195266483416682125, −2.85517749050557000933821514600, −1.688161876302060898965429078850, 1.62780739781386330706988651754, 3.37301404624607489563138589003, 4.2787268780877096892806615947, 5.31188619210369535870012509572, 6.23746806118938136688627802445, 7.861266622488960517694749328797, 9.410060578999306616566394812690, 10.475187754300322257127560971131, 11.42928115356021886956176387762, 12.007522566790003986436404951357, 13.58373573653588825117572400268, 14.6452056498133072221874142172, 15.03496813912523779809376195923, 16.57017565208584818374358853914, 17.01787819740321809042134919419, 18.754425900630745559425174642698, 19.80889537391046835435702647690, 20.97460659599785040277737379739, 21.40132938849807196405010351559, 22.242508798870946070861436866419, 23.32749086347605231755235382305, 24.0621565204708205384395650554, 25.07217955511810766406389003709, 26.44280738764725021130340325014, 27.43211069188340249237852378247

Graph of the ZZ-function along the critical line