L(s) = 1 | + (0.939 − 0.342i)2-s + (−0.342 + 0.939i)3-s + (0.766 − 0.642i)4-s + i·6-s + (0.984 − 0.173i)7-s + (0.5 − 0.866i)8-s + (−0.766 − 0.642i)9-s + (0.5 − 0.866i)11-s + (0.342 + 0.939i)12-s + (−0.766 + 0.642i)13-s + (0.866 − 0.5i)14-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)17-s + (−0.939 − 0.342i)18-s + (−0.342 + 0.939i)19-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (−0.342 + 0.939i)3-s + (0.766 − 0.642i)4-s + i·6-s + (0.984 − 0.173i)7-s + (0.5 − 0.866i)8-s + (−0.766 − 0.642i)9-s + (0.5 − 0.866i)11-s + (0.342 + 0.939i)12-s + (−0.766 + 0.642i)13-s + (0.866 − 0.5i)14-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)17-s + (−0.939 − 0.342i)18-s + (−0.342 + 0.939i)19-s + ⋯ |
Λ(s)=(=(185s/2ΓR(s)L(s)(0.999+0.00624i)Λ(1−s)
Λ(s)=(=(185s/2ΓR(s)L(s)(0.999+0.00624i)Λ(1−s)
Degree: |
1 |
Conductor: |
185
= 5⋅37
|
Sign: |
0.999+0.00624i
|
Analytic conductor: |
0.859136 |
Root analytic conductor: |
0.859136 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ185(128,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 185, (0: ), 0.999+0.00624i)
|
Particular Values
L(21) |
≈ |
1.924940265+0.006012641163i |
L(21) |
≈ |
1.924940265+0.006012641163i |
L(1) |
≈ |
1.692466203+0.009403137857i |
L(1) |
≈ |
1.692466203+0.009403137857i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 37 | 1 |
good | 2 | 1+(0.939−0.342i)T |
| 3 | 1+(−0.342+0.939i)T |
| 7 | 1+(0.984−0.173i)T |
| 11 | 1+(0.5−0.866i)T |
| 13 | 1+(−0.766+0.642i)T |
| 17 | 1+(0.766+0.642i)T |
| 19 | 1+(−0.342+0.939i)T |
| 23 | 1+(0.5+0.866i)T |
| 29 | 1+(−0.866−0.5i)T |
| 31 | 1−iT |
| 41 | 1+(−0.766+0.642i)T |
| 43 | 1−T |
| 47 | 1+(−0.866+0.5i)T |
| 53 | 1+(0.984+0.173i)T |
| 59 | 1+(−0.984−0.173i)T |
| 61 | 1+(−0.642−0.766i)T |
| 67 | 1+(−0.984+0.173i)T |
| 71 | 1+(−0.939−0.342i)T |
| 73 | 1−iT |
| 79 | 1+(0.984−0.173i)T |
| 83 | 1+(−0.642+0.766i)T |
| 89 | 1+(0.984+0.173i)T |
| 97 | 1+(−0.5−0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.293760887072240693624515754247, −25.79588023073830272856879642300, −24.911505485619032831144501738653, −24.41307035293562318934701099648, −23.40433080980754122979260513919, −22.664756858131987193073151211814, −21.73783794777798558664161553259, −20.51363613791902271803031200799, −19.73786882215556079922333865664, −18.266329905415554459663959080581, −17.4121675732776535166407180760, −16.64953170903082168245897180759, −15.055367684692007167418364329165, −14.49598532793796757966652872485, −13.362346083818104661854796485504, −12.340600423282270314465632979345, −11.764327124639444664959380095232, −10.616078097679487063312453421849, −8.629287978835260773387302339811, −7.464340991828687072836325143115, −6.85538229578964000177701991679, −5.38592283886597652769169656939, −4.73434300387195266483416682125, −2.85517749050557000933821514600, −1.688161876302060898965429078850,
1.62780739781386330706988651754, 3.37301404624607489563138589003, 4.2787268780877096892806615947, 5.31188619210369535870012509572, 6.23746806118938136688627802445, 7.861266622488960517694749328797, 9.410060578999306616566394812690, 10.475187754300322257127560971131, 11.42928115356021886956176387762, 12.007522566790003986436404951357, 13.58373573653588825117572400268, 14.6452056498133072221874142172, 15.03496813912523779809376195923, 16.57017565208584818374358853914, 17.01787819740321809042134919419, 18.754425900630745559425174642698, 19.80889537391046835435702647690, 20.97460659599785040277737379739, 21.40132938849807196405010351559, 22.242508798870946070861436866419, 23.32749086347605231755235382305, 24.0621565204708205384395650554, 25.07217955511810766406389003709, 26.44280738764725021130340325014, 27.43211069188340249237852378247