L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.5 − 0.866i)4-s + 6-s + (0.5 + 0.866i)7-s − 8-s + (−0.5 + 0.866i)9-s + 11-s + (0.5 − 0.866i)12-s + (0.5 + 0.866i)13-s + 14-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)18-s + (−0.5 − 0.866i)19-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.5 − 0.866i)4-s + 6-s + (0.5 + 0.866i)7-s − 8-s + (−0.5 + 0.866i)9-s + 11-s + (0.5 − 0.866i)12-s + (0.5 + 0.866i)13-s + 14-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)18-s + (−0.5 − 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.146i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.146i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.702033464 - 0.1254126183i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.702033464 - 0.1254126183i\) |
\(L(1)\) |
\(\approx\) |
\(1.507527745 - 0.1821017226i\) |
\(L(1)\) |
\(\approx\) |
\(1.507527745 - 0.1821017226i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.95081321895478660784268020368, −26.000546179149819179692946957331, −25.14470735763668068859913360207, −24.48877325757474730769236405047, −23.42766609899855429515570166456, −22.98649778663084207034998058089, −21.55882349769026327196977884732, −20.50761991150139907060316595300, −19.57594728176509500370819087728, −18.26978439621610670775176737910, −17.43553986341678199874609899235, −16.66611151341352274235132605161, −15.18339231403320462183155591109, −14.35219811523082985326069712073, −13.6825737069693807628285928410, −12.65215627408378675734905074695, −11.73852630007923337147584208714, −10.05176443214779254377092545588, −8.37137974366604994558023956682, −8.017140058566335578019757346853, −6.72471948224281402971426144084, −5.948069925076772901157372874477, −4.2504514158167553772184910392, −3.29302316214225791655031664153, −1.37727858296318616570241455100,
1.81223489548653750515351876897, 2.97164868000308392516364351015, 4.19532900827566200343217661069, 5.037073156462614083561782061873, 6.36434392654950458235586062216, 8.48796833718866774248952604171, 9.18337656873534024999112632682, 10.16304783268726934643677184533, 11.467373928444306553375914838273, 11.94612721090948557760751803714, 13.62527632701931374458932585165, 14.30467547735306003203453175297, 15.18799872183317969590322671115, 16.18794557570385903717365843196, 17.66789873692879982659758722052, 18.86397853758001236930707694762, 19.66093414696688923397476292280, 20.664348454008886533701196414011, 21.486848247244692962189185947567, 22.013228581721399475144718327305, 23.068289868910321049896634294068, 24.315167222352474304242662947657, 25.24671685478114539420224227461, 26.44308857699347374942006622692, 27.60388540250650980742254007732