Properties

Label 1-185-185.28-r1-0-0
Degree 11
Conductor 185185
Sign 0.123+0.992i0.123 + 0.992i
Analytic cond. 19.881019.8810
Root an. cond. 19.881019.8810
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.342 − 0.939i)2-s + (0.342 − 0.939i)3-s + (−0.766 + 0.642i)4-s − 6-s + (0.984 − 0.173i)7-s + (0.866 + 0.5i)8-s + (−0.766 − 0.642i)9-s + (−0.5 + 0.866i)11-s + (0.342 + 0.939i)12-s + (−0.642 − 0.766i)13-s + (−0.5 − 0.866i)14-s + (0.173 − 0.984i)16-s + (−0.642 + 0.766i)17-s + (−0.342 + 0.939i)18-s + (−0.939 − 0.342i)19-s + ⋯
L(s)  = 1  + (−0.342 − 0.939i)2-s + (0.342 − 0.939i)3-s + (−0.766 + 0.642i)4-s − 6-s + (0.984 − 0.173i)7-s + (0.866 + 0.5i)8-s + (−0.766 − 0.642i)9-s + (−0.5 + 0.866i)11-s + (0.342 + 0.939i)12-s + (−0.642 − 0.766i)13-s + (−0.5 − 0.866i)14-s + (0.173 − 0.984i)16-s + (−0.642 + 0.766i)17-s + (−0.342 + 0.939i)18-s + (−0.939 − 0.342i)19-s + ⋯

Functional equation

Λ(s)=(185s/2ΓR(s+1)L(s)=((0.123+0.992i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.123 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(185s/2ΓR(s+1)L(s)=((0.123+0.992i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.123 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 185185    =    5375 \cdot 37
Sign: 0.123+0.992i0.123 + 0.992i
Analytic conductor: 19.881019.8810
Root analytic conductor: 19.881019.8810
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ185(28,)\chi_{185} (28, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 185, (1: ), 0.123+0.992i)(1,\ 185,\ (1:\ ),\ 0.123 + 0.992i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.077642302240.06860494265i-0.07764230224 - 0.06860494265i
L(12)L(\frac12) \approx 0.077642302240.06860494265i-0.07764230224 - 0.06860494265i
L(1)L(1) \approx 0.55718646980.4649598910i0.5571864698 - 0.4649598910i
L(1)L(1) \approx 0.55718646980.4649598910i0.5571864698 - 0.4649598910i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
37 1 1
good2 1+(0.3420.939i)T 1 + (-0.342 - 0.939i)T
3 1+(0.3420.939i)T 1 + (0.342 - 0.939i)T
7 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
11 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
13 1+(0.6420.766i)T 1 + (-0.642 - 0.766i)T
17 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
19 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
23 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
29 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
31 1T 1 - T
41 1+(0.7660.642i)T 1 + (0.766 - 0.642i)T
43 1iT 1 - iT
47 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
53 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
59 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
61 1+(0.766+0.642i)T 1 + (-0.766 + 0.642i)T
67 1+(0.9840.173i)T 1 + (0.984 - 0.173i)T
71 1+(0.9390.342i)T 1 + (-0.939 - 0.342i)T
73 1+iT 1 + iT
79 1+(0.173+0.984i)T 1 + (0.173 + 0.984i)T
83 1+(0.642+0.766i)T 1 + (-0.642 + 0.766i)T
89 1+(0.1730.984i)T 1 + (0.173 - 0.984i)T
97 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−27.44505377989606637957861343253, −26.64312341308505415770697002715, −26.09420951887499598213499730852, −24.77960319759289350905819340938, −24.21727618032826405271136521370, −23.04842583702382690413121209753, −21.89603192446310984198663334522, −21.20236964448163113905483255021, −19.965052041371355587562034775236, −18.87423229316525290456522785024, −17.87365857203155987277261175257, −16.72986225655454194320714384146, −16.11349794805524063761345798225, −14.9518261849594485592761317670, −14.38631610465511823750567047829, −13.402889749249371173603900740044, −11.48492527072691791605669242713, −10.527241812055065680933652463, −9.37252113011787903264069931821, −8.5061122625855313690365346701, −7.66173626601189153833591557266, −6.070829476952714062960550613464, −4.96215037539727804920190935784, −4.138270476235421614399393211964, −2.20889559731793844957543253956, 0.03697051673331892450218130021, 1.669144028536447424141469937048, 2.40594213464595406201162837590, 3.98931185231301669687214768492, 5.332267213685186994191686999991, 7.22420489258227128220059148050, 7.99893795333699079509320912217, 8.94148607992179937945311470915, 10.33114440391537706940953944152, 11.27146834675853157344908285592, 12.46772644291451607070688138588, 12.99179471036084348245722127264, 14.21623998709630585158355337405, 15.131955355420129546410089610563, 17.168666484935711475317333510795, 17.72729366182788137398357350384, 18.44474982642291088982883399296, 19.72377965129383091205344990720, 20.16331854162402436562955930507, 21.19107143902517803989522693210, 22.298488167003427210303528726664, 23.473266404618123370702542075130, 24.205256209682418257155383681934, 25.53792130913442066714358848746, 26.1868408933931006962507669077

Graph of the ZZ-function along the critical line