L(s) = 1 | + (−0.766 + 0.642i)2-s + (−0.642 + 0.766i)3-s + (0.173 − 0.984i)4-s − i·6-s + (−0.342 − 0.939i)7-s + (0.5 + 0.866i)8-s + (−0.173 − 0.984i)9-s + (0.5 + 0.866i)11-s + (0.642 + 0.766i)12-s + (−0.173 + 0.984i)13-s + (0.866 + 0.5i)14-s + (−0.939 − 0.342i)16-s + (0.173 + 0.984i)17-s + (0.766 + 0.642i)18-s + (−0.642 + 0.766i)19-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)2-s + (−0.642 + 0.766i)3-s + (0.173 − 0.984i)4-s − i·6-s + (−0.342 − 0.939i)7-s + (0.5 + 0.866i)8-s + (−0.173 − 0.984i)9-s + (0.5 + 0.866i)11-s + (0.642 + 0.766i)12-s + (−0.173 + 0.984i)13-s + (0.866 + 0.5i)14-s + (−0.939 − 0.342i)16-s + (0.173 + 0.984i)17-s + (0.766 + 0.642i)18-s + (−0.642 + 0.766i)19-s + ⋯ |
Λ(s)=(=(185s/2ΓR(s)L(s)(−0.826+0.562i)Λ(1−s)
Λ(s)=(=(185s/2ΓR(s)L(s)(−0.826+0.562i)Λ(1−s)
Degree: |
1 |
Conductor: |
185
= 5⋅37
|
Sign: |
−0.826+0.562i
|
Analytic conductor: |
0.859136 |
Root analytic conductor: |
0.859136 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ185(32,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 185, (0: ), −0.826+0.562i)
|
Particular Values
L(21) |
≈ |
0.1350681204+0.4385898302i |
L(21) |
≈ |
0.1350681204+0.4385898302i |
L(1) |
≈ |
0.4498315098+0.3071440280i |
L(1) |
≈ |
0.4498315098+0.3071440280i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 37 | 1 |
good | 2 | 1+(−0.766+0.642i)T |
| 3 | 1+(−0.642+0.766i)T |
| 7 | 1+(−0.342−0.939i)T |
| 11 | 1+(0.5+0.866i)T |
| 13 | 1+(−0.173+0.984i)T |
| 17 | 1+(0.173+0.984i)T |
| 19 | 1+(−0.642+0.766i)T |
| 23 | 1+(0.5−0.866i)T |
| 29 | 1+(−0.866+0.5i)T |
| 31 | 1+iT |
| 41 | 1+(−0.173+0.984i)T |
| 43 | 1−T |
| 47 | 1+(−0.866−0.5i)T |
| 53 | 1+(−0.342+0.939i)T |
| 59 | 1+(0.342−0.939i)T |
| 61 | 1+(0.984+0.173i)T |
| 67 | 1+(0.342+0.939i)T |
| 71 | 1+(0.766+0.642i)T |
| 73 | 1+iT |
| 79 | 1+(−0.342−0.939i)T |
| 83 | 1+(0.984−0.173i)T |
| 89 | 1+(−0.342+0.939i)T |
| 97 | 1+(−0.5+0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.25629201990888399740875663961, −25.755400703958729863003486646395, −25.03658383273606949294552137000, −24.222926112977631819244499346374, −22.65573993510715181408943641279, −22.13513964015593724386963792452, −21.05749067349664606350443518234, −19.68876193812976343813713701516, −19.03435642095950345962380840544, −18.24012608883008720453392326131, −17.34440842979340408082090078070, −16.46263808495413946278116705439, −15.345655235139904275595381315334, −13.49595893492746883926537186578, −12.76137671453691455744104878524, −11.680432005819534718175382050362, −11.13778963012733671834111841623, −9.722590999521310786464631499373, −8.66166428289824138310209281671, −7.60423665915141077176481640282, −6.432067240168888911632196437731, −5.25008201944923850057429059910, −3.25268214355894082551171918337, −2.1326024379572245341172353245, −0.52416559554777705183000583370,
1.51536009923940279388611322095, 3.90174590450880926515967166130, 4.890445376011095280784689302628, 6.36963200126545152373413595085, 6.976474918562864269582431710644, 8.525409266785704659694353408545, 9.68489095066983062621031192352, 10.32426641573246810258176645965, 11.302013385816020068710472822001, 12.66183973749899681927560969372, 14.39142221192436446830447346900, 14.94528769160590265841373694204, 16.31952213731308231626185283952, 16.81322882214950317973066327502, 17.52197725515038023627556097778, 18.77350821427819018486592253531, 19.85465663737484676359669416829, 20.72717331578548564544055325695, 21.99912415199571363588016790426, 23.24113983926989735797332869219, 23.49863870850240758253692942936, 24.897357204723377659748398723427, 26.05558005675800407051516389631, 26.578630579064652181469825086875, 27.511729977464820765572074968120