L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s + (−0.866 − 0.5i)7-s − i·8-s + (0.5 + 0.866i)9-s + 11-s + (0.866 − 0.5i)12-s + (0.866 + 0.5i)13-s − 14-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (0.866 + 0.5i)18-s + (0.5 − 0.866i)19-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.5 − 0.866i)4-s + 6-s + (−0.866 − 0.5i)7-s − i·8-s + (0.5 + 0.866i)9-s + 11-s + (0.866 − 0.5i)12-s + (0.866 + 0.5i)13-s − 14-s + (−0.5 − 0.866i)16-s + (0.866 − 0.5i)17-s + (0.866 + 0.5i)18-s + (0.5 − 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.644 - 0.764i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.644 - 0.764i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.875992115 - 1.801404158i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.875992115 - 1.801404158i\) |
\(L(1)\) |
\(\approx\) |
\(2.272492680 - 0.6408059560i\) |
\(L(1)\) |
\(\approx\) |
\(2.272492680 - 0.6408059560i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + iT \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.72082975511269388788276523433, −25.61795081194035479807986037581, −25.303106059733753203150855030530, −24.41177815890740547204473743702, −23.28905461877097229934251683314, −22.510551196936095943057988204723, −21.397588002544612846044779263856, −20.48730816343648327731117840560, −19.50224155168371676819341327674, −18.54092253368550393821695231752, −17.2309593898328085161842863875, −16.06209896741638570017752220385, −15.19603730965151302936457658557, −14.28795454086290985936878119973, −13.37659127331363198395426256591, −12.53748475326376151029584332346, −11.67700407535228486058130936984, −9.8056813014266473185788402915, −8.65229193918472378844959175673, −7.67715961773922533101882710214, −6.50177132890227714893185318017, −5.70046445253553867008226375149, −3.738541196627590531902666385335, −3.24072786253104252002218783458, −1.61993516509753482632350990938,
1.20134797481881114648601274575, 2.82049594341687468815554555004, 3.69515324847073128294684559911, 4.608193522282537551929049323528, 6.19622229551611807440014522972, 7.26060744371695802824067612867, 9.01383298558352160423664736529, 9.797470919408957046045482185658, 10.84541208231910676706980063454, 12.02682165581028253916214873626, 13.31308705604730998822071712718, 13.89895896128479385301374689105, 14.8301941283994161144045961130, 15.92988545111724298012316185896, 16.64911719043803901919544880160, 18.68370945299884975111557083407, 19.41745997611607047823260453202, 20.299211503241279928607447108023, 20.95402642002816193238180711624, 22.12873053819101222180299920903, 22.704699135636709030392380340805, 23.90868652277994579812713154829, 24.96705955159777559605389967001, 25.7754978819631957054914622379, 26.79946702661941151262149677047