L(s) = 1 | + (−0.939 − 0.342i)2-s + (−0.342 − 0.939i)3-s + (0.766 + 0.642i)4-s + i·6-s + (0.984 + 0.173i)7-s + (−0.5 − 0.866i)8-s + (−0.766 + 0.642i)9-s + (0.5 + 0.866i)11-s + (0.342 − 0.939i)12-s + (0.766 + 0.642i)13-s + (−0.866 − 0.5i)14-s + (0.173 + 0.984i)16-s + (−0.766 + 0.642i)17-s + (0.939 − 0.342i)18-s + (0.342 + 0.939i)19-s + ⋯ |
L(s) = 1 | + (−0.939 − 0.342i)2-s + (−0.342 − 0.939i)3-s + (0.766 + 0.642i)4-s + i·6-s + (0.984 + 0.173i)7-s + (−0.5 − 0.866i)8-s + (−0.766 + 0.642i)9-s + (0.5 + 0.866i)11-s + (0.342 − 0.939i)12-s + (0.766 + 0.642i)13-s + (−0.866 − 0.5i)14-s + (0.173 + 0.984i)16-s + (−0.766 + 0.642i)17-s + (0.939 − 0.342i)18-s + (0.342 + 0.939i)19-s + ⋯ |
Λ(s)=(=(185s/2ΓR(s)L(s)(0.959−0.283i)Λ(1−s)
Λ(s)=(=(185s/2ΓR(s)L(s)(0.959−0.283i)Λ(1−s)
Degree: |
1 |
Conductor: |
185
= 5⋅37
|
Sign: |
0.959−0.283i
|
Analytic conductor: |
0.859136 |
Root analytic conductor: |
0.859136 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ185(87,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 185, (0: ), 0.959−0.283i)
|
Particular Values
L(21) |
≈ |
0.7341742005−0.1061136530i |
L(21) |
≈ |
0.7341742005−0.1061136530i |
L(1) |
≈ |
0.7079088913−0.1511617112i |
L(1) |
≈ |
0.7079088913−0.1511617112i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 37 | 1 |
good | 2 | 1+(−0.939−0.342i)T |
| 3 | 1+(−0.342−0.939i)T |
| 7 | 1+(0.984+0.173i)T |
| 11 | 1+(0.5+0.866i)T |
| 13 | 1+(0.766+0.642i)T |
| 17 | 1+(−0.766+0.642i)T |
| 19 | 1+(0.342+0.939i)T |
| 23 | 1+(−0.5+0.866i)T |
| 29 | 1+(0.866−0.5i)T |
| 31 | 1−iT |
| 41 | 1+(−0.766−0.642i)T |
| 43 | 1+T |
| 47 | 1+(−0.866−0.5i)T |
| 53 | 1+(0.984−0.173i)T |
| 59 | 1+(0.984−0.173i)T |
| 61 | 1+(0.642−0.766i)T |
| 67 | 1+(−0.984−0.173i)T |
| 71 | 1+(−0.939+0.342i)T |
| 73 | 1+iT |
| 79 | 1+(−0.984−0.173i)T |
| 83 | 1+(−0.642−0.766i)T |
| 89 | 1+(−0.984+0.173i)T |
| 97 | 1+(0.5−0.866i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−27.0942569713600301735431169453, −26.719034444042492763850204724467, −25.54130323810650106403554675768, −24.4829683704038516164888159883, −23.66409536741845191259206785001, −22.441577460759229402644123004086, −21.32489880196805398381340007526, −20.45340336635528262076798042233, −19.67206916930591311432200307045, −18.06380515117943460982484296807, −17.69740198854951780352587876533, −16.45932179786169968832251510709, −15.83652355657665594749489560863, −14.79459231951228589878524693058, −13.86024075441835493197565998006, −11.75490351555692061401639493748, −11.0548745042781213548155466381, −10.308680195364141443545281429551, −8.91402492219535355503475209614, −8.403390033352109993823491176432, −6.82635311134441417151694069330, −5.68360033929736579209624103604, −4.58647778750504902023255348707, −2.91716736668036147019791984446, −0.960848802261530792490641096469,
1.44003285423419141366087450649, 2.11995458240231623536888494397, 4.06910944566146819185172417206, 5.88481323224742391195312564130, 6.97060679304233829922199528551, 7.96921318883155407597717136010, 8.79957310952759427179230912592, 10.20434400779253811317326218095, 11.476682986411664070630338441809, 11.85842335767032667779844272542, 13.08873943017253620833004023201, 14.340749681511559554103192832403, 15.650492958436297019913019256840, 16.95871417351690107007005732366, 17.64946367003780750204507177039, 18.344805491751151422539836858530, 19.28401622753642328464296379632, 20.232376698771394456548533283888, 21.17457383819596444772311714774, 22.34472099389303815412798039445, 23.615312193229608808539167003099, 24.47946626337686920111083400086, 25.28769798756379712866340435531, 26.17083029279790511829386895805, 27.462416942671377913102146377923