L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.766 − 0.642i)4-s + (0.766 − 0.642i)5-s + (−0.5 + 0.866i)8-s + (−0.5 + 0.866i)10-s + (0.766 + 0.642i)11-s + (0.766 − 0.642i)13-s + (0.173 − 0.984i)16-s + (−0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s + (0.173 − 0.984i)20-s + (−0.939 − 0.342i)22-s + (−0.939 − 0.342i)23-s + (0.173 − 0.984i)25-s + (−0.5 + 0.866i)26-s + ⋯ |
L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.766 − 0.642i)4-s + (0.766 − 0.642i)5-s + (−0.5 + 0.866i)8-s + (−0.5 + 0.866i)10-s + (0.766 + 0.642i)11-s + (0.766 − 0.642i)13-s + (0.173 − 0.984i)16-s + (−0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s + (0.173 − 0.984i)20-s + (−0.939 − 0.342i)22-s + (−0.939 − 0.342i)23-s + (0.173 − 0.984i)25-s + (−0.5 + 0.866i)26-s + ⋯ |
Λ(s)=(=(189s/2ΓR(s)L(s)(0.983−0.178i)Λ(1−s)
Λ(s)=(=(189s/2ΓR(s)L(s)(0.983−0.178i)Λ(1−s)
Degree: |
1 |
Conductor: |
189
= 33⋅7
|
Sign: |
0.983−0.178i
|
Analytic conductor: |
0.877712 |
Root analytic conductor: |
0.877712 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(4,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 189, (0: ), 0.983−0.178i)
|
Particular Values
L(21) |
≈ |
0.9005942956−0.08115069351i |
L(21) |
≈ |
0.9005942956−0.08115069351i |
L(1) |
≈ |
0.8470139080+0.005783245469i |
L(1) |
≈ |
0.8470139080+0.005783245469i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(−0.939+0.342i)T |
| 5 | 1+(0.766−0.642i)T |
| 11 | 1+(0.766+0.642i)T |
| 13 | 1+(0.766−0.642i)T |
| 17 | 1+(−0.5+0.866i)T |
| 19 | 1+(−0.5−0.866i)T |
| 23 | 1+(−0.939−0.342i)T |
| 29 | 1+(0.766+0.642i)T |
| 31 | 1+(0.766−0.642i)T |
| 37 | 1+T |
| 41 | 1+(0.766−0.642i)T |
| 43 | 1+(−0.939+0.342i)T |
| 47 | 1+(0.766+0.642i)T |
| 53 | 1+(−0.5−0.866i)T |
| 59 | 1+(0.173+0.984i)T |
| 61 | 1+(0.766+0.642i)T |
| 67 | 1+(−0.939−0.342i)T |
| 71 | 1+(−0.5−0.866i)T |
| 73 | 1+T |
| 79 | 1+(−0.939+0.342i)T |
| 83 | 1+(0.766+0.642i)T |
| 89 | 1+(−0.5−0.866i)T |
| 97 | 1+(−0.939+0.342i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−26.958534491942302234800752659163, −26.45599898874385493568160035770, −25.27060154811276592911425897982, −24.847140511059930702792653210793, −23.32671965133622781117304664390, −22.008888313225996825647071813360, −21.40606365591722299779229729418, −20.38415099492951171654057223823, −19.23716421178072650654678393054, −18.48820174354523388409017190249, −17.65345954791622938995000943079, −16.67970905081524214577761442064, −15.75922968929549757010812897077, −14.32638154879259995039521660511, −13.45316412107960874251505567010, −11.930691515954167873007466156505, −11.13442926480575975858611737946, −10.084644610254845751940987731141, −9.20316269018797242099171900473, −8.162043322159255469533453887413, −6.721940748175658163115065172161, −6.07855528177532526035080015545, −3.93231796730081783775012416990, −2.64733202438969851383983833425, −1.42399009256563541854181268214,
1.16703385731665824040211567662, 2.36497961863503588172927467442, 4.4324072582864212231870218899, 5.88458385745003305389278040809, 6.631785483860637087597700653131, 8.15346134589651125769814334104, 8.94469513552205620575732347193, 9.92173532803487896809773181471, 10.86847931592323185300440072757, 12.202540578912384469413948597316, 13.34331136192323573140520882022, 14.5927920117360820980080588163, 15.59615365849984061545417112729, 16.62232596406221327518820185649, 17.55794003529621215486055612231, 18.019174271931716387803930438293, 19.49737631134906734449881814526, 20.17680263451330459171178803285, 21.1209403867970572384889256268, 22.2947496166154523612157822803, 23.67557998825979147366811960851, 24.45956471407013200408001685222, 25.462860251881397277301944027819, 25.87454024614980630564537379471, 27.17436715134841579494551203074