L(s) = 1 | + (0.809 − 0.587i)3-s + 7-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)13-s + (−0.809 − 0.587i)17-s + (0.809 + 0.587i)19-s + (0.809 − 0.587i)21-s + (0.309 + 0.951i)23-s + (−0.309 − 0.951i)27-s + (0.809 − 0.587i)29-s + (−0.809 − 0.587i)31-s + (−0.809 − 0.587i)33-s + (−0.309 + 0.951i)37-s + (0.309 + 0.951i)39-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s + 7-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)13-s + (−0.809 − 0.587i)17-s + (0.809 + 0.587i)19-s + (0.809 − 0.587i)21-s + (0.309 + 0.951i)23-s + (−0.309 − 0.951i)27-s + (0.809 − 0.587i)29-s + (−0.809 − 0.587i)31-s + (−0.809 − 0.587i)33-s + (−0.309 + 0.951i)37-s + (0.309 + 0.951i)39-s + ⋯ |
Λ(s)=(=(200s/2ΓR(s)L(s)(0.728−0.684i)Λ(1−s)
Λ(s)=(=(200s/2ΓR(s)L(s)(0.728−0.684i)Λ(1−s)
Degree: |
1 |
Conductor: |
200
= 23⋅52
|
Sign: |
0.728−0.684i
|
Analytic conductor: |
0.928796 |
Root analytic conductor: |
0.928796 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ200(141,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 200, (0: ), 0.728−0.684i)
|
Particular Values
L(21) |
≈ |
1.490816577−0.5902560389i |
L(21) |
≈ |
1.490816577−0.5902560389i |
L(1) |
≈ |
1.369774500−0.3265760321i |
L(1) |
≈ |
1.369774500−0.3265760321i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(0.809−0.587i)T |
| 7 | 1+T |
| 11 | 1+(−0.309−0.951i)T |
| 13 | 1+(−0.309+0.951i)T |
| 17 | 1+(−0.809−0.587i)T |
| 19 | 1+(0.809+0.587i)T |
| 23 | 1+(0.309+0.951i)T |
| 29 | 1+(0.809−0.587i)T |
| 31 | 1+(−0.809−0.587i)T |
| 37 | 1+(−0.309+0.951i)T |
| 41 | 1+(0.309−0.951i)T |
| 43 | 1−T |
| 47 | 1+(−0.809+0.587i)T |
| 53 | 1+(0.809−0.587i)T |
| 59 | 1+(−0.309+0.951i)T |
| 61 | 1+(−0.309−0.951i)T |
| 67 | 1+(0.809+0.587i)T |
| 71 | 1+(−0.809+0.587i)T |
| 73 | 1+(0.309+0.951i)T |
| 79 | 1+(−0.809+0.587i)T |
| 83 | 1+(0.809+0.587i)T |
| 89 | 1+(0.309+0.951i)T |
| 97 | 1+(−0.809+0.587i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−26.91529018176039279901232248169, −26.21965333410870982802391107646, −25.06889014570012005389322455780, −24.48618442031008753754389903808, −23.20433354727957471233866369594, −22.07335863031001894346153217807, −21.27211252663022249415715206514, −20.19080466390896484464107675709, −19.87228943905171852318815294266, −18.247000130030949977442700585149, −17.580264905347815410330989187863, −16.21571803115042795848954639245, −15.12893864165672256875303591956, −14.68155585453487881114538968719, −13.47777207015365745801312234261, −12.43832019466330139146363196755, −10.957751918970303458555268770578, −10.21526145341380552489751281848, −8.98173526340202755534012715555, −8.08122345886630399835600293358, −7.11043262294181123440268915855, −5.17864174132437569804140162229, −4.48861438930799776807832233174, −3.00386558897333523308527842705, −1.842407604649897411949522200615,
1.38271222462127771759948304491, 2.57810669334502157338657624515, 3.91818940429495813689360886828, 5.30987291212119296870583192782, 6.76475056973725224512337955098, 7.78580149682558607307478601417, 8.64751491573721352228703118210, 9.66091987131435491307531179239, 11.247605258747353312807497717198, 11.96639304529696212554821573165, 13.47066942697265335751054666881, 13.96353804680463150047940499760, 14.96329997372466547466010928168, 16.068350027940801340649887887108, 17.37903859889949517846922986924, 18.34275936112626843064955384569, 19.069568170787033990392994854225, 20.14332839007252056425068853387, 21.00967016623389789077483791990, 21.799841848676601729864415814173, 23.30636823567967247058632216810, 24.297324926117281025371647283851, 24.59795601944616418006339420959, 25.878792754440910040066733152693, 26.77663042553579115410405089496