L(s) = 1 | + (0.809 − 0.587i)3-s + 7-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)13-s + (−0.809 − 0.587i)17-s + (0.809 + 0.587i)19-s + (0.809 − 0.587i)21-s + (0.309 + 0.951i)23-s + (−0.309 − 0.951i)27-s + (0.809 − 0.587i)29-s + (−0.809 − 0.587i)31-s + (−0.809 − 0.587i)33-s + (−0.309 + 0.951i)37-s + (0.309 + 0.951i)39-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)3-s + 7-s + (0.309 − 0.951i)9-s + (−0.309 − 0.951i)11-s + (−0.309 + 0.951i)13-s + (−0.809 − 0.587i)17-s + (0.809 + 0.587i)19-s + (0.809 − 0.587i)21-s + (0.309 + 0.951i)23-s + (−0.309 − 0.951i)27-s + (0.809 − 0.587i)29-s + (−0.809 − 0.587i)31-s + (−0.809 − 0.587i)33-s + (−0.309 + 0.951i)37-s + (0.309 + 0.951i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.728 - 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.728 - 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.490816577 - 0.5902560389i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.490816577 - 0.5902560389i\) |
\(L(1)\) |
\(\approx\) |
\(1.369774500 - 0.3265760321i\) |
\(L(1)\) |
\(\approx\) |
\(1.369774500 - 0.3265760321i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.809 - 0.587i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (-0.309 - 0.951i)T \) |
| 13 | \( 1 + (-0.309 + 0.951i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
| 23 | \( 1 + (0.309 + 0.951i)T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.309 + 0.951i)T \) |
| 61 | \( 1 + (-0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.809 + 0.587i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (0.809 + 0.587i)T \) |
| 89 | \( 1 + (0.309 + 0.951i)T \) |
| 97 | \( 1 + (-0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.91529018176039279901232248169, −26.21965333410870982802391107646, −25.06889014570012005389322455780, −24.48618442031008753754389903808, −23.20433354727957471233866369594, −22.07335863031001894346153217807, −21.27211252663022249415715206514, −20.19080466390896484464107675709, −19.87228943905171852318815294266, −18.247000130030949977442700585149, −17.580264905347815410330989187863, −16.21571803115042795848954639245, −15.12893864165672256875303591956, −14.68155585453487881114538968719, −13.47777207015365745801312234261, −12.43832019466330139146363196755, −10.957751918970303458555268770578, −10.21526145341380552489751281848, −8.98173526340202755534012715555, −8.08122345886630399835600293358, −7.11043262294181123440268915855, −5.17864174132437569804140162229, −4.48861438930799776807832233174, −3.00386558897333523308527842705, −1.842407604649897411949522200615,
1.38271222462127771759948304491, 2.57810669334502157338657624515, 3.91818940429495813689360886828, 5.30987291212119296870583192782, 6.76475056973725224512337955098, 7.78580149682558607307478601417, 8.64751491573721352228703118210, 9.66091987131435491307531179239, 11.247605258747353312807497717198, 11.96639304529696212554821573165, 13.47066942697265335751054666881, 13.96353804680463150047940499760, 14.96329997372466547466010928168, 16.068350027940801340649887887108, 17.37903859889949517846922986924, 18.34275936112626843064955384569, 19.069568170787033990392994854225, 20.14332839007252056425068853387, 21.00967016623389789077483791990, 21.799841848676601729864415814173, 23.30636823567967247058632216810, 24.297324926117281025371647283851, 24.59795601944616418006339420959, 25.878792754440910040066733152693, 26.77663042553579115410405089496